
Chapter 6. Fuzzy Clustering

• Clustering:
Clustering essentially deals with the task of splitting a set of patterns into

a number of more-or-less homogeneous classes (clusters) with respect

to a suitable similarity measure such that the patterns belonging to any 

one of the clusters are similar and the patterns of different clusters are

as dissimilar as possible.

~ Depending on the structure of the partition, two different kinds of

clustering can be distinguished:

(1) Hard clustering:

The partition is a set of disjoint subsets of patterns in such a way

that each object belongs to exactly one cluster.

(2) Fuzzy clustering:

Each object belongs to a cluster to a certain degree according to the

membership function of the cluster. The partition is fuzzy in the  

sense that a single object can simultaneously belong to multiple 

clusters.    
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• Hard clustering.

(1)  k – means algorithm :

~  “ k” simply refers to the number of desired clusters and can be replaced by

any desired index .

~  Feature vectors are continuously reassigned to clusters, and the cluster    

centroids are updated until no further reassignment is necessary.

~  Algorithm :

Initialization :

randomly generate        mean vectors ( centroid ) of each cluster,        , 

k = 1 , 2 … . 

Recursion :

Step 1.  For each feature vector, X , in the training set , assign X to       ,         

where

K kX

K

*k
C

( ) = arg min , .k
k

k d X X∗

6-2



d( ∙, ∙) represents some distance measure in the feature space.

e.g.  Euclidean distance :

Mahalanobis distance

Step 2. Recompute the cluster centroids and return to step 1 if any of the    

centroids change from the last iteration.

N : number of samples in cluster k* at t .
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(2). Kohonen learning rule or winner–take–all learning rule

Similarity matching :

Updating 

α(t) : a suitable learning constant at the  t-th time step.
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• Formulation of fuzzy clustering
~ Given                                                  perform a partition of      into C fuzzy             

sets w.r.t. a given criterion.

C: number of clusters

Criterion: optimization of an objective function

Result: a partition matrix       s.t.

:expresses the degree to which the element       belongs to the i-th cluster.

additional constraints:
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~ A general form of the objective function:

priori weight for 
degree of similarity between       and       (central vector of the
ith cluster), and should satisfy two axioms:

~ Fuzzy clustering can be formulated as:
Minimize
subject  to  Eqs. (1)  and  (2)

• Fuzzy c-means (FCM) : [ Bezdek , 1981]
Based on Eq.(3) and 
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m: exponential weight , influences the degree of fuzziness of the

membership  (partition) matrix.

~Derivation of       and        :
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2 (for fixed      ): The constraint of Eq. (1) can be expressed by  introducing            

a Lagrange multiplier      .
iju iv
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~ The system described by Eqs.(4) and (6) can not be solved analytically

~ Solution : by iterative approach

Algorithm FCM : Fuzzy C-Means Algorithm 
Step1 : Select

initial partition          and termination 

set the iteration index    to 0.

Step2 : Calculate the fuzzy cluster centers

by using    and Eq. (4).

Step3 : Calculate             by using                          and Eq. (6).

Step4 : Calculate

If             , then set                   and go to Step2

if             , then stop.
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EX : The data for the butterfly shown below are processed

by  a fuzzy 2-means algorithm with
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Result : 
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Remark : 

(1)         , fuzziness of the partition matrix    .

(2)                                                  

(3) In practice , choose       from the range [1.5 , 30]. 

• Determination of the “correct” number of clusters, C

~ no exact solution to this question.

~ some scalar measures of partitioning fuzziness have been used as validity   
indicators, e.g.

m ↑ ↑
1

,  U
c

m ⎡ ⎤→∞ →⎢ ⎥⎣ ⎦
m

6-12



1. Partitioning entropy :
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Remarks: { } ( )(1) 0 and 1 if 0,1   hard partitioningijH F u= = ∈

ij

1 1
(2) lnC and  if u  , for all i , j

C
H F

C
= = =

1
(3) 0 ln  ,  1 ,  0H C F P

C
≤ ≤ ≤ ≤ ≤ ≤ ∞

~ Assume that the clustering structure is better identified 
when more points concentrate around the cluster centers 
i.e. the crisper the partitioning matrix is .

~Based on the above assumption , the heuristic rules for selecting 
the best partitioning   number C are: 
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Ex : Iris data .
It contains three categories of the species Iris .

0for U used is guess oneonly 

40.m  ,  05.0 =∈=

Fig.    Iris data set in example
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2             0.55                              0.63            109

3             0.92                              0.45          113  

4             1.21                              0.35          111

5             1.43                              0.27          62

6             1.60                              0.23          68      

Partition entropy        Partition coefficient       Proportion exponent

C

Table is  Validity indicators in example 

);( cUF);( cUH );( cUP
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