Chapter 6. Fuzzy Clustering

• Clustering:

Clustering essentially deals with the task of splitting a set of patterns into a number of more-or-less homogeneous classes (clusters) with respect to a suitable similarity measure such that the patterns belonging to any one of the clusters are similar and the patterns of different clusters are as dissimilar as possible.

- ~ Depending on the structure of the partition, two different kinds of clustering can be distinguished:
 - (1) Hard clustering:

The partition is a set of disjoint subsets of patterns in such a way that each object belongs to exactly one cluster.

(2) Fuzzy clustering:

Each object belongs to a cluster to a certain degree according to the membership function of the cluster. The partition is fuzzy in the sense that a single object can simultaneously belong to multiple clusters.

• Hard clustering.

- (1) k means algorithm :
 - ~ "k" simply refers to the number of desired clusters and can be replaced by any desired index .
 - ~ Feature vectors are continuously reassigned to clusters, and the cluster centroids are updated until no further reassignment is necessary.
 - ~ Algorithm :

Initialization:

randomly generate \overline{K} mean vectors (centroid) of each cluster, \overline{X}_k , k = 1, 2... \overline{K} .

Recursion :

Step 1. For each feature vector, X , in the training set , assign X to C_{k^*} ,

where $k^* = \arg \min_k d(X, \overline{X}_k)$.

 $d(\cdot, \cdot)$ represents some distance measure in the feature space.

e.g. Euclidean distance :

$$d\left(X,\overline{X}\right) = (X - \overline{X})^{T} (X - \overline{X})$$

Mahalanobis distance

$$d(X,\overline{X}) = (X - \overline{X})^T C_{\overline{X}}^{-1}(X - \overline{X}),$$

$$C_{\overline{X}}: \text{ covariance matrix}$$

Step 2. Recompute the cluster centroids and return to step 1 if any of the centroids change from the last iteration.

$$\overline{X}_{k^*}^{(t+1)} = \overline{X}_{k^*}^{(t)} + \frac{1}{N+1} \Big(X - \overline{X}_{k^*}^{(t)} \Big),$$

$$\overline{X}_{K^*}^{(t+1)} = \frac{X + N \cdot \overline{X}_{K^*}^{(t)}}{N+1}$$

N: number of samples in cluster k^* at t.

6-4

(2). Kohonen learning rule or winner-take-all learning rule

Similarity matching :

$$k^* = \arg \min_k d(X, \overline{X}_k).$$

Updating

$$\overline{X}_{k^{*}}^{(t+1)} = \overline{X}_{k^{*}}^{(t)} + \alpha^{(t)} \left(X - \overline{X}_{k^{*}}^{(t)} \right)$$

$$\overline{X}_{k}^{(t+1)} = \overline{X}_{k}^{(t)} , \ k = 1, \ 2, \ \cdots, \ \overline{K} \ , \ k \neq k^{*}.$$

 $\alpha^{(t)}$: a suitable learning constant at the *t*-th time step.

• Formulation of fuzzy clustering

~ Given $X = {\vec{x_1}, \vec{x_2} \cdots \vec{x_n}}, \vec{x_i} \in \mathbb{R}^p$, perform a partition of X into C fuzzy sets w.r.t. a given criterion.

C: number of clusters

Criterion: optimization of an objective function

Result: a partition matrix U s.t.

$$U = [u_{ij}]_{i=1 \sim c, j=1 \sim n} \qquad u_{ij} \in [0, 1]$$

 \mathcal{U}_{ij} :expresses the degree to which the element \vec{x}_{ij} belongs to the *i*-th cluster.

additional constraints:

$$\sum_{i=1}^{C} u_{ij} = 1, \text{ for } j = 1 \sim n \quad \dots (1)$$
$$0 < \sum_{j=1}^{n} u_{ij} < n, \text{ for } i = 1 \sim C \quad \dots (2)$$

 \sim A general form of the objective function:

$$J(u_{ij}, \vec{v}_i) = \sum_{i=1}^{C} \sum_{j=1}^{n} g[w(\vec{x}_i), u_{ij}] d(\vec{x}_j, \vec{v}_i)$$

 $w(\vec{x}_j)$: priori weight for \vec{x}_i

 $d(\vec{x}_j, \vec{v}_i)$: degree of similarity between \vec{x}_i and \vec{v}_i (central vector of the ith cluster), and should satisfy two axioms:

(a.1) $d(\vec{x}_i, \vec{v}_i) \ge 0$

$$(a.2) \quad d(\vec{x}_{i}, \vec{v}_{i}) = d(\vec{v}_{i}, \vec{x}_{i})$$

~ Fuzzy clustering can be formulated as:

Minimize $J(u_{ij}, \vec{v}_i)$ $i=1, 2\cdots C$ $j=1, 2\cdots n$ (3) subject to Eqs. (1) and (2)

• Fuzzy c-means (FCM) : [Bezdek, 1981] Based on Eq.(3) and

$$J(u_{ij}, \vec{v}_i) = \sum_{i=1}^{C} \sum_{j=1}^{n} u_{ij}^{m} || \vec{x}_j - \vec{v}_i ||^2 \quad m > 1$$

m: exponential weight, influences the degree of fuzziness of the membership (partition) matrix.

$$-\text{Derivation of } \vec{v}_{i} \text{ and } \vec{u}_{ij} : \frac{\partial J}{\partial \vec{v}_{p}} = \frac{\partial}{\partial \vec{v}_{p}} \left\{ \sum_{i=1}^{C} \sum_{j=1}^{n} u_{ij}^{m} \| \vec{x}_{j} - \vec{v}_{i} \|^{2} \right\}$$

$$= \sum_{j=1}^{n} u_{pj}^{m} \frac{\partial}{\partial \vec{v}_{p}} \| \vec{x}_{j} - \vec{v}_{p} \|^{2}$$

$$= \sum_{j=1}^{n} u_{pj}^{m} \frac{\partial}{\partial \vec{v}_{p}} (\vec{x}_{j} - \vec{v}_{p})^{T} (\vec{x}_{j} - \vec{v}_{p})$$

$$= 2 \sum_{j=1}^{n} u_{pj}^{m} (\vec{x}_{j} - \vec{v}_{p})$$

$$\vec{v}_{p} = \frac{1}{\sum_{j=1}^{n} (u_{pj})^{m}} \sum_{j=1}^{n} (u_{pj})^{m} \vec{x}_{j} , \quad p = 1, 2, \dots C \quad (4)$$

2 \mathcal{U}_{ij} (for fixed $\vec{\mathcal{V}}_i$): The constraint of Eq. (1) can be expressed by introducing a Lagrange multiplier λ .

$$J(u_{ij}, \vec{v}_{i}, \lambda) = \sum_{i=1}^{C} \sum_{j=1}^{n} u_{ij}^{m} ||\vec{x}_{j} - \vec{v}_{i}||^{2} - \lambda \left(\sum_{i=1}^{C} u_{ij} - 1\right)$$

$$0 = \frac{\partial J}{\partial u_{pq}} = m \cdot \left(u_{pq}\right)^{m-1} ||\vec{x}_{q} - \vec{v}_{p}||^{2} - \lambda, u_{pq} = \left(\frac{\lambda}{m}\right)^{\frac{1}{m-1}} \left(\frac{1}{||\vec{x}_{q} - \vec{v}_{p}||^{2}}\right)^{\frac{1}{m-1}} (5)$$

$$0 = \frac{\partial J}{\partial \lambda} \implies 1 = \sum_{i=1}^{C} u_{iq} = \left(\frac{\lambda}{m}\right)^{\frac{1}{m-1}} \sum_{i=1}^{C} \left(\frac{1}{||\vec{x}_{q} - \vec{v}_{i}||^{2}}\right)^{\frac{1}{m-1}} (5)$$

$$\left(\frac{\lambda}{m}\right)^{\frac{1}{m-1}} = \frac{1}{\sum_{i=1}^{C} (||\vec{x}_{q} - \vec{v}_{i}||^{2})^{\frac{1}{m-1}}}, \text{ substitute into Eq. (5)}$$

$$u_{pq} = \frac{(1/||\vec{x}_{q} - \vec{v}_{i}||^{2})^{\frac{1}{m-1}}}{\sum_{i=1}^{C} (1/||\vec{x}_{q} - \vec{v}_{i}||^{2})^{\frac{1}{m-1}}}, p = 1, 2, ..., C, q = 1, 2, ..., n \quad (6)$$

 \sim The system described by Eqs.(4) and (6) can not be solved analytically

~ Solution : by iterative approach

Algorithm FCM : Fuzzy C-Means Algorithm

Step1 : Select C ($2 \le C \le n$), m ($1 < m < \infty$), initial partition $U^{(0)}$ and termination \mathcal{E} set the iteration index l to 0. Step2 : Calculate the fuzzy cluster centers { $\vec{v}_p^{(l)} \mid p = 1, 2, \dots, C$ } by using $U^{(l)}$ and Eq. (4).

Step3 : Calculate $U^{(l+1)}$ by using $\{ \vec{v}_p^{(l)} | p = 1, 2, \dots, C \}$ and Eq. (6).

Step4 : Calculate $\Delta = \left\| U^{(l+1)} - U^{(l)} \right\| = \max_{i,j} \left| u_{ij}^{(l+1)} - u_{ij}^{(l)} \right|$ If $\Delta > \varepsilon$, then set l = l + 1 and go to Step2 if $\Delta \le \varepsilon$, then stop.

EX : The data for the butterfly shown below are processed by a fuzzy 2-means algorithm with

$$U^{(0)} = \begin{bmatrix} 0.854 & 0.146 & 0.854 & 0.854 & \cdots & 0.854 \\ 0.146 & 0.854 & 0.146 & 0.146 & \cdots & 0.146 \end{bmatrix}_{2 \times 15}$$

$$\varepsilon = 0.01 \ , \ m = 1.25$$

Figure 8.3 Data for the "butterfly" in Example 8.3.

Result :

Remark :

(1) $m\uparrow$, fuzziness of the partition matrix \uparrow .

(2)
$$m \to \infty, \ \mathbf{U} \to \left\lfloor \frac{1}{\mathbf{c}} \right\rfloor$$

(3) In practice , choose m from the range [1.5, 30].

- Determination of the "correct" number of clusters, C
 - ~ no exact solution to this question.
 - ~ some scalar measures of partitioning fuzziness have been used as validity indicators, e.g.

1. Partitioning entropy :

$$H(U, C) = \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{c} |u_{ij}| \ln |u_{ij}|$$

2. Partition coefficient :

$$F(U, C) = \frac{1}{n} \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{2}$$

3. Proportion exponent :

$$P(U, C) = -\ln\left\{\prod_{j=1}^{n} \left[\sum_{k=1}^{u_j^{-1}} (-1)^{k+1} {\binom{c}{k}} (1-ku_j)^{(c-1)}\right]\right\}$$

where $u_j = \max_{1 \le i \le c} u_{ij}$, $\left[u_j^{-1}\right] = \text{greatest integer} \le \left(\frac{1}{u_j}\right)$

Remarks: (1) H = 0 and F = 1 if $u_{ij} \in \{0,1\}$ (hard partitioning) 6-14 (2) $H = \ln C$ and $F = \frac{1}{C}$ if $u_{ij} = \frac{1}{C}$, for all i, j (3) $0 \le H \le \ln C$, $\frac{1}{C} \le F \le 1$, $0 \le P \le \infty$

> ~ Assume that the clustering structure is better identified when more points concentrate around the cluster centers i.e. the crisper the partitioning matrix is .

~Based on the above assumption , the heuristic rules for selecting the best partitioning number C are:

$$\min_{c=2}^{n-1} \left\{ \min_{U \in \Omega_{C}} \left[H(U,C) \right] \right\}$$
$$\max_{c=2}^{n-1} \left\{ \max_{U \in \Omega_{C}} \left[F(U,C) \right] \right\}$$
$$\max_{c=2}^{n-1} \left\{ \max_{U \in \Omega_{C}} \left[P(U,C) \right] \right\}$$

 Ω_c : The set of all optimal solution for a given C

Ex : Iris data .

It contains three categories of the species Iris .

 $\epsilon\!=0.05$, m = 40.

only one guess is used for U $^{\rm 0}$

Fig. Iris data set in example

6-16

Table is Validity indicators in example

Partition entropy		Partition coefficient	Proportion exponent
С	H(U;c)	F(U;c)	P(U;c)
2	0.55 ←	0.63 ←	109
3	0.92	0.45	113 ←
4	1.21	0.35	111
5	1.43	0.27	62
6	1.60	0.23	68