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Chapter 6. Fuzzy Clustering
* Clustering:
Clustering essentially deals with the task of splitting a set of patternsinto
anumber of more-or-less homogeneous classes (clusters) with respect
to a suitable similarity measure such that the patterns belonging to any
one of the clusters are similar and the patterns of different clusters are
asdissimilar as possible.
~ Depending on the structure of the partition, two different kinds of
clustering can be distinguished:
(1) Hard clustering:
The partition is aset of digoint subsets of patternsin such away
that each object belongs to exactly one cluster.
(2) Fuzzy clustering:
Each object belongs to a cluster to a certain degree according to the
membership function of the cluster. The partition isfuzzy in the
sense that a single object can simultaneously belong to multiple
clusters.

» Hard clustering.
(1) k—meansalgorithm :
~ * k" simply refersto the number of desired clusters and can be replaced by
any desired index .
~ Feature vectors are continuously reassigned to clusters, and the cluster
centroids are updated until no further reassignment is necessary.
~ Algorithm :
Initialization :
randomly generate K mean vectors ( centroid ) of each cluster, X, ,
k=1,2... K.
Recursion :
Step 1. For each feature vector, X , in thetraining set , assign X to Ck*,

where  k* = arg mkind(X,)?k).




d( - , - ) represents some distance measure in the feature space.
e.g. Euclidean distance:
d(X,X)=(X-X)T(X-X)
Mahal anobis distance
d(X,X)=(X=X) CHX~X),

C, : covariance matrix

Step 2. Recompute the cluster centroids and return to step 1 if any of the

centroids change from the last iteration.
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_ _ _ _ X +N-X&
(1) _ o0, L a0 (t+1) _
X _xk*+|\|+1(x XM), XD = e
N : number of samplesin cluster k* at t .
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(2). Kohonen learning rule or winner—take—all learning rule
Similarity matching :
k* = arg mkind(X,)?k).
Updating

F(+) _ 7)) 7 ()
XM= XY 4o (x - X )

XD =xW k=12 -, K, kz k.

a © : asuitable learning constant at the t-th time step.
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» Formulation of fuzzy clustering

~GivenX ={X,%,+--X}, X € RP, performapartition of X into C fuzzy
setsw.r.t. agiven criterion.
C: number of clusters
Criterion: optimization of an objective function
Result: a partition matrix |J sit.

U = [uij]i=1~c,j=1~n U;; € [0, 1]
U; j -expresses the degree to which the element X j belongs to the i-th cluster.

additional constraints:
Yy =1, forj=1~n ---(1)

0<>u,<n, fori=1~C ---(2)

=

~ A general form of the objective function: 6-6

C n
‘](uij’vi): Zg[W(X) , uij] d()_(j’vi)
i=1  j=1
W(X;): priori weight for X
d( X, V;): degreeof similarity between X; and V; (central vector of the
ith cluster), and should satisfy two axioms:
(@l d(x , V)20

@2 d(x ,v)=dv,x)

~ Fuzzy clustering can be formulated as:
Minimize J(qj,\7i) 1=1,2---C j=12--n 3
subject to Egs. (1) and (2)

* Fuzzy c-means (FCM) : [ Bezdek , 1981]
Based on Eq.(3) and
C n
= S oI
‘J(uij'vi)zz Z U [|%, -V I m>1

i=1 =1




m: exponential weight , influences the degree of fuzziness of the 6-7
membership (partiti on) matrix.
~Derivation of \7 and U
I X -V IIZJ

ij -

0J 0 [ &
for fixedu,) O0=— u
o ) v, 8\7IO [,le =

= 3

ER
=350 v) (37,
:zjzi;ug}(j—vp)

V= 1 Zn:(upj)mxj . p=1,2,-C (4
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2 Uij(forfixed \/I ): The constraint of Eq. (1) can be expressed by introducing
alLagrange multiplier 4 .
C n C
3 9. 2=3 Sk -4 Sy -1)
i=1 j=1 i=1
0J m-1 A 1 1 1
0= = X -V |[F-4,u = m-1 m-1 (5
au ( pq) ” q p ” pPq ( ) (” —-q _\_ip ”2) ( )

A i=1 i=1 ” Xq _VI ”
1
(%) ml = 1 —, substitute into Eq. (5)

Z(IIX - |F)m

i
@R =, ) B ~
Pa ¢ 1 p—1,2,...,C, q-1,2,...,n (6)

> @R, =V, [P

i=1




~ The system described by Egs.(4) and (6) can not be solved analytically
~ Solution : by iterative approach

Algorithm FCM : Fuzzy C-Means Algorithm
Stepl:Select C (2<C<n), m(1<m<eo),
initial partition U ‘“and termination €
set the iteration index | to 0.
Step2 : Calculate the fuzzy cluster centers
{v,"|p=12,--,C} byusingy “and Eq. (4).

Step3 : Calculate U "V py usingl \7p(l | p=1,2,--,C} and Eq. (6).
Step4 : Calculate A = HU D —u (l)H = max ‘Uﬁlﬂ) - ug”

If A> &,thenset | =1 + 1 and go to Step2
if A < g, then stop.

EX : The datafor the butterfly shown below are processed 6-10
by afuzzy 2-means algorithm with

0.146 0854 0.146 0.146 --- 0.146
=001, m=125

Lo _{0.854 0.146 0.854 0.854 - 0.854}
2x15

® i Figure 83 Data for the “butterfly”in
Example 8.3
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Result :
Values for by m=1.25
29 0l
® 2
I 0
@ &
1 1 99 47 0 0
e o o & & o o
A xh
e e =

Figure 8.4 Clustering result form=1.25
o in Example 8.3.

Remark : 6-12

(1) m T, fuzziness of the partition matrix T.
(ame%UAF}
C

(3) In practice, choose M from the range[1.5, 30].
e Determination of the “correct” number of clusters, C

~ no exact solution to this question.

~ some scalar measures of partitioning fuzziness have been used as validity
indicators, e.g.
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1. Partitioning entropy :

H(U,C)-= LG‘, ZC: ‘Uij In uy

-]

2. Partition coefficient :

FU.C) ==Y 3 v

-]
[
i
[
i

3. Proportion exponent :

P(U ,C) = — In{ ; l:i (_1)k+1(ﬁ)(1_ kuj)(cl)}}

j=1| k=1

where u; =max u; , | uj' | = greatest integer < (i]

] I<i<c u.
J

Remarkss () H=0andF =1if u,€{0,1} (hard partitioning) 6-14
(@ H=InCandF =2 ifu == forali,j
C C
(3)0 <H <InC, éSFSL 0<P<oo

~ Assume that the clustering structure is better identified
when more points concentrate around the cluster centers
I.e. the crisper the partitioning matrix is.

~Based on the above assumption , the heuristic rules for selecting
the best partitioning number C are:

min{in[H.O)l

rﬁélx{max[F u ,C)]}

c=2 |UeQc

nqu{max[P(U ,C)]}

c=2 |UeQ¢

Q¢ * The set of all optimal solution for agiven C




Ex : Irisdata.
It contains three categories of the species|ris.

e=0.05, m=40.
only one guess is used for U°

Virginica (A,)

1 ﬁ?’

Sestosa (A ) Versicolor (A,)

Petal Width, cm

| =il -

| 1 1 [
T T 1 I | 1 T Lol

1 2 3 4 5 6 Petal Length, cm

Fig. Iris data set in example
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Table is Validity indicators in example

Partition entropy Partition coefficient ~ Proportion exponent

€ HUo F(U;c) PU:C)
2 055 <« 0.63 -« 109
3 0.92 0.45 113
4 1.21 0.35 111
5 1.43 0.27 62
6 1.60 0.23 68
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