
Chapter 5.     Fuzzy   Logic   Control   System

~ In contrast to conventional control techniques, fuzzy logic control (FLC) is   

best utilized in complex ill-defined processes that can be controlled by a skilled 

human operator without much knowledge of their underlying dynamics.

~ The basic idea behind FLC is to incorporate the "expert experience" of a  

human operator in the design of the controller in controlling a process whose 

input – output relationship is described by collection of fuzzy control rules (e.g., 

IF-THEN rules) involving linguistic variables rather than a complicated 

dynamic  model.

~ The utilization of linguistic variables, fuzzy control rules, and approximate 

reasoning provides a means to incorporate human expert experience in  

designing the controller.
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~ FLC is strongly based on the concepts of fuzzy sets, linguistic variables and 

approximate reasoning introduced in the previous chapters.

~ This chapter will introduce the basic architecture and functions of fuzzy logic 

controller, and some practical application examples.

~ A typical architecture of FLC is shown below, which comprises of four 

principal comprises: a fuzzifier, a fuzzy rule base, inference engine, and a 

defuzzifier.  
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~ If the output from the defuzzifier is not a control action for a plant, then the 

system is fuzzy logic decision system.

~ The fuzzifier has the effect of transforming crisp measured data (e.g. speed is 

10 mph) into suitable linguistic values (i.e. fuzzy sets, for example, speed is too 

slow).

~ The fuzzy rule base stores the empirical knowledge of the operation of the 

process of the domain experts.

~ The inference engine is the kernel of a FLC, and it has the capability of 

simulating human decision making by performing approximate reasoning to 

achieve a desired control strategy.

~ The defuzzifier is utilized to yield a nonfuzzy decision or control action from an 

inferred fuzzy control action by the inference engine.      
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． Input and output spaces.

~ A proper choice of process state variables and control variables is essential to 

characterization of the operation of a fuzzy logic control system (FLCS).

~ Expert experience and engineering knowledge play an important role during 

this state variables and control variables selection process.

~ Typically, the input variables in a FLC are the state, state error, 

state error derivative, state error integral, and so on.

~ The input vector x and the output state vector y can be defined, respectively, 

as 
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where the input linguistic variables xi form a fuzzy input space U=U1 ×U2 …×

Un and the output linguistic variables yi form a fuzzy output space V=V1 ×V2 

…Vm.

~ An input linguistic variable, variable xi , is associated with a term set

~ The size (or cardinality) of a term set, ∣T(xi)∣= ki  , is called the fuzzy   

partition number of xi.     

~ Diagrammatic representation of a fuzzy partition
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~ For a two-input FLC, the fuzzy input space is divided into many 

overlapping grids.
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Rule set.    R1: IF e is N And de is N   Then u is L
R2: IF e is Z And de is N   Then u is L
R3: IF e is P And de is N   Then u is S
R4: IF e is N And de is Z   Then u is S
R5: IF e is Z And de is Z    Then u is M
R6: IF e is P And de is Z    Then u is S
R7: IF e is N And de is P   Then u is S
R8: IF e is Z And de is P   Then u is L
R9: IF e is P And de is P    Then u is L 

~ Grid-type partition:
N: Negative
Z: Zero
P: Positive
L: Large
S: Small
M: Medium



~ In the case of a two-input-one-output fuzzy logic control system, if

︱T(x1)︱= 3 and ︱T(x2)︱= 7, then the maximum number of fuzzy 

control rules is 3×7.

~ The input membership functions                                and

the output membership functions                             used in a   

FLC are usually parametric functions such as triangular functions,   

trapezoid functions, and bell-shaped functions.                    

~ The triangular-shaped functions and the trapezoidal-shaped functions,

can be represented by L-R fuzzy numbers, while the bell-shaped 

membership functions can be defined as   

i ,  k  =  1 ,  2  ,  kµ "
i

k
x

i ,  l = 1, 2 , yµ A "A
i
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~ Furthermore, the fuzzy partitions in a fuzzy input space determine 

the maximum number of fuzzy control rules in a FLCS.

2
i

2
i

( x -m )
 (x )  =  e x p ( -  ) .   

ixµ
σ

where mi and σi  specify the center location and the width of the bell-shaped 

function, respectively.  

~ Proper fuzzy partition of input and output spaces and a correct choice of  

membership functions play an essential role in achieving a successful FLC  

design.

~ Traditionally, a heuristic trial-and-error procedure is usually used to 

determine an optimal fuzzy partition.

~ A promising approach to automating and speeding up these design choices is

to provide a FLC with the ability to learn its input and output membership 

functions and fuzzy control rules. 
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．Fuzzifier

~ A fuzzifier performs the function of fuzzification which is a subjective 

valuation to transform measurement data into valuation of a subjective value. 

~ It can be defined as a mapping from an observed input space to labels of 

fuzzy sets in a specified input universe of discourse.

~ In fuzzy control application the observed data are usually crisp (though they 

may be corrupted by noise).

~ A natural and simple fuzzification approach is to convert a crisp value,x0 ,into 

a fuzzy singleton, A, within the specified universe of discourse.

That is, the membership function of A, μA(x), is equal to 1 at the point x0, and 

zero at other places. This approach is widely used in FLC applications because

it greatly simplifies the fuzzy reasoning process.

In this case , for a specific value xi (t) at time t , it is mapped to the fuzzy set        

with degree                     and to the fuzzy set  with degree                       1

1Tx 1

1
x i(x ( ))tµ

i

2
xT i

2
x i(x ( ))tµ
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and so on.

~ In a more complex case, where observed data are disturbed by random noise, 

a fuzzifier should convert the probabilistic data into fuzzy numbers, that is, 

fuzzy (possibility) data.

．Fuzzy Rule Base

~ Fuzzy control rules are characterized by a collection of fuzzy IF-THEN rules

in which the preconditions (antecedents) and consequents involve linguistic  

variables.

~ The general form of the fuzzy control rules in the case of multi-input-single-

output systems (MISO) is:

Ri : IF x is Ai , …, AND y is Bi , THEN z is Ci .   i=1~ n. 

where x, …, y and z are linguistic variables representing the process state 

variable and the control variable, respectively, and Ai ,… ,Bi , Ci are the  

linguistic values of the linguistic values of the linguistic variables x, …, y and 

z in the universe of discourse U, …,V and W.
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~ Another form : 

Ri : If x is Ai , … . AND y is Bi , THEN z = fi (x, …,y). 

where fi (x, …,y) is a function of the process state variables x, …,y. 

~ Both fuzzy control rules have linguistic values as inputs and either 

linguistic values or crisp values as outputs.    

‧Inference Engine :

~ The inference engine is the kernel of FLC in modeling human decision

making within the conceptual framework of fuzzy logic and 

approximate reasoning.

~ The generalized modus pones (forward data-driven inference) plays an

especially important role in approximate reasoning.    

~ The generalized modus pones can be rewritten as        
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Premise 1: IF x is A, THEN y is B.          (*) 

Premise 2: x is A’

Conclusion:  y is B’

where A, A’, B and B’are fuzzy predicates (fuzzy sets or relations) in the 

universal sets U, U ,V and V, respectively.     

~ In general, a fuzzy control rule ( e.g. premise 1 in Eq (*)) is a fuzzy relation 

which is expressed as a fuzzy implication, R = A     B.

~ According to the compositional rule of inference conclusion, B’ can be obtained 

by taking the composition of fuzzy set A’and the fuzzy relation (here the fuzzy 

relation is a fuzzy implication) A    B:

B’= A’ o R = A’ o  (A    B).             (*) 
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~ In addition to the definitions of fuzzy composition and implication given in 

Chap. 6, there are four types of compositional operators that can be used in the 

compositional rule of inference.These correspond to the four operations 

associated with the t-norms.    

－Max-min  operation.

－Max product operation.

－Max  bounded product (max － ) operation.     

－Max drastic product (max － ) operation.       

~ In FLC applications, the max-min and max-product compositional operators 

are the most commonly and frequently used due to their computational 

efficiency.

Let max－ represent any one of the above four composition operations. 
Then    (*) becomes : 
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~ As for the fuzzy implication A      B, there are nearly 40 distinct fuzzy 

implication functions described in the existing literature, e.g.  (see Table 7.1 )  

a     b= a b

a     b= a‧b

a b= 0      (a+b-1)  

a     b=    a   b=1              

b   a=1              

0   a, b<1 

a     b=1    (1-a+b)

RC : min operation[Mamdani]

RP : product operation[Larsen]

RbP:bounded product

RdP:drastic product

Ra: arithmetic rule [Zadeh] 

Fuzzy ImplicationImplication FormulasRule of  Fuzzy Implication
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~ The fuzzy implication rules defined in Table 7.1 are generated from the fuzzy

conjunction, fuzzy disjunction, or fuzzy implication by employing various t-

norms or t-conorms. 

~ The above four implications are all t-norms. For example, Mamdani’s min 

fuzzy implication Rc is obtained if the intersection operator is used in the 

fuzzy conjunction. (fuzzy conjunction                        )     

~ Larsen ’s product fuzzy implication RP is obtained if the algebraic product is 

used in the fuzzy conjunction.

~ Rbp and Rdp are obtained if the bounded product and the drastic product are 

used in the fuzzy conjunction.  

Ex : Assume fuzzy set A’ is a singleton at u0.; i.e.

A B(x, y)  t( (x), (y)). A Bµ µ µ∩ �

A 0 A 0(u ) 1 and (u) 0  for u uµ µ′ ′= = ≠
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B

v

The consequent B ’ under the fuzzy implications A      B is as follows , where 

with a =0.3 (dotted line) And a=0.7 ( solid line). A 0(u ) aµ =

B

a=0.7

a=0.3

(2)RP : a‧b

B

a=0.3

a=0.7

(3)       :0v (a+b-1) (4)      : 

B
a=0.7

a=0.3

a     b=1              

b     a=1          

0    a, b<1      

a=0.3

a=0.7

B

(1)RC : a b∧
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~ Among the various fuzzy implications in Table7.1, Mamdani’s fuzzy 

implication method RC associated with the max-min composition is the most 

frequently used in fuzzy logic control.

Ex 7.2 :       Premise 1: IF x is A, THEN y is B

Premise 2: x is A’

Conclusion : y is B’.

derive the conclusion B’, when  

A’=A, A’= VERY A, A’=MORE OR LESS A,  A’=NOT A.

Here, Mamdani’s method RC and max-min composition are adopted.

(a) For A’= A                       B’=A o  RC

μB’(v) =     {μA(u)    (μA(u)      μB(v) ) }=      {μA(u)   μB(v)}

=     μA(u)     μB(v) = 1    μB(v) = μB(v) 

∧ ∧
∧ ∧

5-16

∧
u
∨

u
∨

u
∨

(b) For A’= A2  (VERY A). 

μB’(v) =  V {μ2
A(u)    (μA(u)     μB(v) ) }= V {μ2

A(u)    μB(v)}

= 1     μB(v) = μB(v) 
u u

(c) For A’= 1－A (NOT A). 

μB’(v) =  V { (1－μA(u))     (μA(u)     μB(v) )  }

= V {(1－μA(u))    μA(u) }    μB(v) = 0.5    μB(v). 
u

u

Table 7.2 Summary of inference results for generalized modus pones  
(max-min composition). 

A          Very A (A2)      More or Less A (A1/2)                Not A.

Rc μB                   μB                                          μB                                                     0.5    μB

Rp μB μB                                         μB                                                           

Ra

Rs μB μ2
B                                                               1                 

B1+µ
2

B B3+2 5 4µ µ− +
2

B5 4 1µ+ −
2

Bµ

B

B(1+ )

µ
µ
1

∧ ∧
∧

∧
∧ ∧ ∧

∧
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~ The above results are all based on the max-min composition.

~ for A’=A, B’=A o Ra = (1+B)/2     B.

Ra does not satisfy normal modus pones if max-min composition is used.             

~ Let     and      denote the max bounded product and the max drastic product

compositions, respectively. Then we have

B’=A     Ra = A     Ra = B

that is, it satisfies the modus ponens. 

‧Application of the generalized modus pones in the inference engine of a 

FLC

~ In most cases, the fuzzy rule base has the form of multi-input-multi-output

(MIMO) system.

R= {R1
MIMO , R2

MIMO , R3
MIMO , … , Rn

MIMO }.   

where Ri
MIMO represents the ith rule:

IF(x is Ai AND … AND y is Bi) THEN (Z1 is C1
i , …, Zq is Cq

i )

≠
∴
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Zq: qth control variable.

Cq
i: output predicate of the qth control variable.

The precondition of Ri
MIMO forms a fuzzy set Ai        … Bi in the product 

space U    … V, and the consequent is the union of q independent control 

actions.

~ Ri
MIMO may be represented as a fuzzy implication

q
i 1 q
MIMO i i i i i i i

=1

R :  (A B ) ( ) (A B )  k

k

C C C× × → + + = × × →" " "∪
Where + represents the union of q independent control actions or variable.

n n
i 1 q
MIMO i i i i

i = 1 i = 1

qn

i i i
i = 1  = 1

q n

i i i
 = 1i = 1

1 2
MISO MISO MISO

R = R = (A B ) ( )    

         = (A B )

         = (A B )

         = RB  ,  RB  ,  , RB

k

k

k

k

C C

C

C

⎧ ⎫ ⎧ ⎫⎡ ⎤× × → + +⎨ ⎬ ⎨ ⎬⎣ ⎦⎩ ⎭ ⎩ ⎭
⎧ ⎫

⎡ ⎤× × →⎨ ⎬⎣ ⎦
⎩ ⎭
⎧ ⎫

⎡ ⎤× × →⎨ ⎬⎣ ⎦
⎩ ⎭

" "

"

"

"

∪ ∪

∪∪

∪∪

{ }q  .
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1 2
MIMO 1 1 1 1 2 1

1 2
2 2 1 2 2 2

1 2
3 3 1 3 2 3

e.g.,

R :  IF x is A  AND y is B  THEN Z  is C  AND Z  is C

             IF x is A  AND y is B  THEN Z  is C  AND Z  is C

             IF x is A  AND y is B  THEN Z is C  AND Z  is C

can be re
1 1
MISO 1 1 1 1

1
2 2 1 2

1
3 3 1 3

2
MISO 1 1

presented by 

RB :  IF x is A  AND y is B  THEN Z  is C  

               IF x is A  AND y is B  THEN Z  is C

               IF x is A  AND y is B  THEN Z  is C

RB :  IF x is A  AND y is B  THEN 2
2 1

2
2 2 2 2

2
3 3 2 3

  Z  is C

              IF x is A  AND y is B  THEN  Z  is C

               IF x is A  AND y is B  THEN  Z  is C

~ Observation:

(1)The above equation shows that the fuzzy rule base R of a FLC is composed 

of a set of q subrules bases RBi
MISO , with each subrule base RBi

MISO

consisting of n fuzzy control rules with multiple process state variables and 

a single control variable.

(2)Thus, a MIMO system with n inputs and q outputs can be decomposed into 

q n-input-single-output subsystems, and each of these q subsystems has a 

set of subrule base {RBi
MIMO}.             

(3)Hence, instead of considering fuzzy control rules for a MIMO system, we 

will consider fuzzy control rules only for a MISO system.

~ The general form of a MISO fuzzy control rules in the case of two-input-single-

output fuzzy systems is        
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Input                 :   x is A’ AND y is B’

R1 :    IF x is A1 AND y is B1, THEN Z is C1 

(*)   ALSO   R2           :    IF x is A2 AND y is B2 , THEN Z is C2

ALSO   Rn           :    IF x is AN AND y is Bn, THEN Z is Cn

Conclusion : Z  is C’.

~ In the above rules, the connectives AND and ALSO may be interpreted as either

intersection (∩) or union (∪) for different definitions of fuzzy implication in 

Table 7.1.

##
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Theorem 1:

Consider the whole set of rules in Eq (*), with minimum t-norm and

Mamdani ’s minimum fuzzy implication  RC , the conclusion        can be 

expressed as a unification of the individual conclusions of fuzzy control rules. 

That is,          

C′

n n

C i i i C i i i
i = 1 i = 1

C  = (A  , B ) o  R (A  , B  ; C ) = (A  , B ) o R (A ,B ;C )′ ′ ′ ′ ′∪ ∪
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Remark:

(1) The above theorem is also true for RP. RbP, RdP.

(2) The rule connective ALSO is interpreted as the union operator (∪) for RC, RP ,

RbP and RdP  fuzzy implication.

(3) On the other hand, the connective ALSO is interpreted as the intersection 

operator (∩) for Ra , Rm , Rs , Rb,and RD fuzzy implications, so, we have

n n

a i i i a i i i
i = 1 i = 1

C  = (A  , B ) o  R (A  , B  ; C ) = (A  , B ) o R (A ,B ;C ).′ ′ ′ ′ ′∩ ∩
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(4) The above theorem still holds if we use the max-product composition  

instead of the max-min composition.
~ We shall focus on two special fuzzy implication rules RC and RP, which are 

most commonly used in FLCS.

~ Since in fuzzy control the inputs are usually fuzzy singletons, namely,              

and             in Eq. (*), the following theorem plays an important role in FLC 

applications.           

′
0A  = u

0B   v′ =

Theorem 2:

Consider the max-min compositional operator    and minimum t-norm. If the 
inputs are fuzzy singletons, namely,             and            , then the results       in 
Eq. (*) derived by employing  Mamdani’s minimum operation rule Rc and 
Larsen ’s product operation rule RP, respectively, may be expressed simply as:

′
0A  = u 0B   v′ = C′

i i i i

i i i i

n n

C C i C A 0 B 0 C
i = 1 i = 1

n n

P C i C A 0 B 0 C
i = 1 i = 1

i

             R : (w) ( ) (u ) (v ) ( ).

             R : (w) ( ) (u ) (v ) ( )

where  denotes the  of the i-th u e r l

V V

V V

fir

w w

w

ing strength

w

µ µ µ µ µ

µ µ µ µ µ

′

′

⎡ ⎤= Φ ∧ ≡ ∧ ∧⎣ ⎦

⎡ ⎤= Φ ≡ ∧⎣ ⎦

Φ

i i

 which is a measure of 

the contribution of the i-th rule to the fuzzy control action. 

(**)
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Pf: For RC :

[ ]
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C i i i

C
u

Remarks:

1. Eq (**) is the most frequently used in fuzzy control applications

2. For fuzzy input A   and B

(1)AND: use ( , ) ,   max-min composition, implication:

 C = (A ,B ) R (A , B ;C )

( )  

Ct a b a b R

wµ ′

′ ′
= ∧

′ ′ ′

=

D
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i i i

i i i
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A B A B C
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1 2 C
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(2)AND: use ( , ) ,   max-product composition, implication:

C = 

V

V V B

P

w

v v w
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‧Types of fuzzy reasoning

~ The two types of fuzzy reasoning currently employed in FLC 
applications are as follows:

-First type (Mamdani type)

Assume that we have two fuzzy control rules as follows:

R1 : IF x is A1 AND y is B1 ,THEN Z is C1.

R2 : IF x is A2 AND y is B2 ,THEN Z is C2.

then the firing strengths Φ1 and Φ2 of the first and second rules may be 

expressed as

where μA1(x0) and μB1(y0) indicate the degrees of partial match between 

the user-supplied data and the data in the fuzzy rule base. 

1 1 2 21 A 0 B 0 2 A 0 B 0 ( ) ( ) and  ( ) ( ).x y x yµ µ µ µΦ = ∧ Φ = ∧
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(1a)   Mamdani ’s minimum fuzzy implication rule,    RC. 

In this mode of reasoning. the ith fuzzy control rule leads to the control 

decision    

The final inferred consequent C is given by                   

The fuzzy reasoning process is illustrated as follows           

i iC i C(w) (w).µ µ′ = Φ ∧

1 2 1 2C C C 1 C 2 C( w ) ( w ) ( w )µ µ µ µ µ′ ′ ⎡ ⎤ ⎡ ⎤= ∨ = Φ ∧ ∨ Φ ∧⎣ ⎦ ⎣ ⎦

μC

1

0
Z

0
x

1

μA1 A1

0
x

1

μA2 A2

0
y

1

μB1 B1

0
y

1

μB2 B2

0
Z

1

μC1 C1

0
Z

1

μC2 C2

x0 y0
min
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(1b).  Larsen’s product fuzzy implication rule, RP.

In this case, the ith fuzzy control rule leads to the control decision

i iC i C(w) (w).µ µ′ = Φ i

1 2 1 2C C C 1 C 2 C( w ) ( w ) ( w )µ µ µ µ µ′ ′ ⎡ ⎤ ⎡ ⎤= ∨ = Φ ∨ Φ⎣ ⎦ ⎣ ⎦i i
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1 1

1 1

1

A1 B1 C1

A2 B2
C2

0 0 0

0

000

X Y Z

X Y Zmin

Z

μA1 μB1 μC1

μA2 μB2 μC2

μC

x0 y0



- Second type (TSK-type or TS-type)

The consequent of a rule is a function of  input linguistic variables.

~ Ri : IF x is Ai … AND y is Bi , THEN z = fi (x , … , y). Consider two fuzzy  

control rules as follows:

R1: IF x is A1 AND y is B1 , THEN z is f1(x,y)

R2: IF x is A2 AND y is B2 , THEN z is f2(x,y)

~ When the inputs are x0 and y0, the inferred values of the control action  from 
the first and second rules are f1(x0,y0) and f2(x0,y0) , respectively. A crisp 
control action is given by 

~ This method was proposed by Takagi, Sugeno and Kang, and is usually 

called TSK-type or TS-type.

~ In general,  fi (x , … , y) is a linear combination of the input variables plus a

constant.  i.e.

1 1 0 0 2 2 0 0
0

1 2

( , ) ( , )f x y f x y
z

Φ + Φ=
Φ + Φ

0 1 n
i i i if a a x a y= + + +"
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• Defuzzifier

~A mapping from a space of fuzzy control action defined over an output

universe of discourse into a space of non-fuzzy (crisp) control actions.

~ A defuzzifier is necessary when fuzzy reasoning of the first type is used.

~ Two commonly used methods of defuzzification are the center of area 

(COA) method and the mean of maximum (MOM) method.

~ COA:

(1) In the case of a discrete universe of discourse. 

where n is the number of quantization levels of the output , zj is the 

amount of control output at the quantization level j , and μc(zj)

represents its membership value in the output fuzzy set c.

1*

1

( )

( )

n

c j jj
COA n

c jj

z z
z

z

µ

µ
=

=

=
∑
∑
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(2) a continuous universe of discourse.

~ MOM:

~ Generates a control action that represents the mean value of all local 

control action whose membership functions reach the maximum.

~ In the case of a discrete universe,

where zj is the support value at which the membership function reaches

the maximum value μc(zj) and m is the number of such support values.

*
( )

( )

cz
COA

cz

z zdz
z

z dz

µ

µ
= ∫
∫

*

1

m
j

MOM
j

z
z

m=

= ∑
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Ex 7.3:

We are given a fuzzy logic control system with the following two fuzzy

control rules:

Rule 1 : IF x is A1 AND y is B1 , THEN z is C1

Rule 2 : IF x is A2 AND y is B2 , THEN z is C2

Suppose x0 and y0 are the sensor readings for linguistic input variables x and

y and

1 2

1 2

1

( 2) / 3    2 5 ( 3) / 3    3 6
( )       ( )

(8 ) / 3     5< 8 (9 ) / 3     6< 9

( 5) / 3    5 8 ( 4) / 3    4 7
( )     ( )

(8 ) / 3     8< 11 (10 ) / 3   7< 10

( 1) /
( )

A A

B B

C

x x x x
x x

x x x x

y y y y
y y

y y y y

z
z

µ µ

µ µ

µ

− ≤ ≤ − ≤ ≤⎧ ⎧
= =⎨ ⎨− ≤ − ≤⎩ ⎩

− ≤ ≤ − ≤ ≤⎧ ⎧
= =⎨ ⎨− ≤ − ≤⎩ ⎩

−
= 2

3      1 4 ( 3) / 3      3 6
    ( )

(7 ) / 3     4< 7 (9 ) / 3      6< 9C

z z z
z

z z z z
µ

≤ ≤ − ≤ ≤⎧ ⎧
=⎨ ⎨− ≤ − ≤⎩ ⎩
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at time t1 , we have x0 = 4 and y0 = 8.

μA1(4) = 2/3 , μB1(8) = 1 , μA2(4) = 1/3 , μB2(8) = 2/3.

Φ1 = min(μA1(x0) , μB1(y0) ) = min(2/3 , 1) = 2/3

Φ2 = min(μA2(x0) , μB2(y0) ) = min(1/3 , 2/3) = 1/3

*

*

1 2 2 2 1 1 1
2( ) 3( ) 4( ) 5( ) 6( ) 7( ) 8( )

3 3 3 3 3 3 3 4.7
1 2 2 2 1 1 1
3 3 3 3 3 3 3

(3 4 5) 3 4.0

COA

MOM

z

z

+ + + + + +
= =

+ + + + + +

= + + =

μA1 μB1 μC

μA2 μB2 μC2

minx0=4 y0=8

1 1

1
1

A1
B1

C1

A2
B2

C2

0

0

0

000

X Y Z

X Y Z
1/3

2/3

1/3
2/3

1

Z0 1 2 3 4 5 6 7 89
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Ex: (TSK- type fuzzy rules)
Rule 1 : IF x is A1 AND y is B1 , THEN z=2+2x-4y
Rule 2 : IF x is A2 AND y is B2 , THEN z=1+3x+y
Suppose x0= 4 and y0 = 8, find z=? 

Sol: 

Φ1=2/3 and Φ2=1/3 (from previous example)
Rule 1: 2 2(4) 4(8) 22

Rule 2: 1 3(4) (8)  21

2 1
( 22) (21) 233 3Final output:  

2 1 3
3 3

z

z

z

= + − = −
= + + =

− + −= =
+



error ,  control action:

Normalized error: ( ) ( ),  

Normalized change in error: ( ) ( ( ) ( )),  

Normalized increment in control action: ( ) ( )

,  and : normalizati

d

n e

n ce

n u

e ce u

e y y u

e t n e t

ce t n e t e t T

u t u t n

n n n
δ

δ

δ δ

= −
= ⋅

= ⋅ − −
= ⋅

on (scaling) factor

( ) ( ) ( )

Fuzzy rule: IF ( ) is P AND ( ) is N THEN ( ) is Zn n n

u t u t T u t

e t ce t u t

δ
δ

= − +

Example:

Response of a simple generic plant
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• Implementation of fuzzy controller:

(1) The consequent is a fuzzy singleton.

~ Rule i : IF      x1 is Ai1 AND … AND xn is Ain

Then   u is wi.

x1, …, xn: input variables.

u    : control output variable.

Aij: fuzzy set, where Gaussian membership function is used.

2
: center of fuzzy set .

( ) exp{ ( ) },   
:  width of fuzzy set .ij

ij ijj ij
A j

ij ijij

m Ax m
x

A
µ

σσ
−

= −
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~ The firing strength Φ of rule i is 

where the “ algebraic product” is used for fuzzy AND operation. 

or          

where the “ min” operation is used for fuzzy AND operation.

~ The final output of the fuzzy controller consisting of r rules is :

2

1 1

( ) ( ) exp{ ( ) }
n n

j ij
i ij j

j j ij

x m
x xµ

σ= =

−
Φ = = −∏ ∑K

1

1

( )
( )

( )

r

i i
i

r

i
i

x w
u x

x

=

=

Φ
=

Φ

∑

∑

K
K

K
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Ex:   Rule 1 : IF x is A1 AND y is B1 , THEN u is 4
Rule 2 : IF x is A2 AND y is B2 , THEN u is 6
Find z when inputs x0=4 and y0=8. 
(1) Use product for AND operation. 
(2) Use minimum for AND operation

Sol:

1 1 0 1 0

2 2 0 2 0

1 1 0 1 0

2 2 0 2 0

(1)
2 2

2 2 ( ) 4 ( ) 6 9( ) ( ) 1 3 9 4.53 3 2 2, 2
1 2 2 3 9( ) ( )
3 3 9

(2)
2 1

2 2 ( ) 4 ( ) 6 14( ) ( ) 1 3 3
3 3 2 1, 3
1 2 1 3 3( ) ( )
3 3 3

A B

A B

A B

A B

x y u

x y

x y u

x y

µ µ

µ µ

µ µ

µ µ

⋅ + ⋅Φ = ⋅ = ⋅ = = = =
+

Φ = ⋅ = ⋅ =

⋅ + ⋅Φ = ∧ = ∧ = = =
+

Φ = ∧ = ∧ =

1

1

( ) ( )
control output     ( )

( )

r

i i
i

r

i
i

x f x
u x

x

=

=

Φ
=

Φ

∑

∑

K K
K

K

(2) The consequent is TSK type.

~ Rule i : IF    x1 is Ai1 AND … AND xn is Ain

THEN

(3) The consequent is a fuzzy set.

~ Rule i : IF    x1 is Ai1 AND … AND xn is Ain

Then    u is Bi.    Bi : a fuzzy set.

① The local mean-of-maximum method. (LMOM).

SL

C C

1.01.0

SL SR

iΦ
iΦ

1( )iµ − Φ1( )iµ − Φ
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For triangular functions , LMOM gives  

② Based on center of area 

IF Bi is a fuzzy set , with Gaussian membership fun.

1

1

1

1

1

1
               ( ) ( )(1 ).

2

( ) is the -coordinate of the centroid of   

( ) ( ( ))
output       ( )
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i R L i

i i
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i i
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i
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c S S

u B

x x
u x

x

µ

µ

µ

−

−

−

=

=

Φ = + − − Φ

Φ

Φ ⋅ Φ
=

Φ

∑

∑

K K
K

K

2

1

1

              exp{ ( ) }
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=

=
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=
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• Antecedent part partition:

① Grid-type partition:
N: Negative
Z: Zero
P: Positive
L: Large
S: Small
M: Medium

② Flexible partition:

S
L

S

N P
x1

N

Z
P

x
2
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M SS

L

L

N Z P

N

Z
P

x1

x
2

L S

S L

R1:
IF x1 is N and x2 is N
Then u is L



• Design Methodology of Fuzzy Control Systems.

~ The principal elements of designing a FLC include:

(1) defining input and output variables.

(2) deciding on the fuzzy partition of the input and output spaces and

choosing the membership functions for the input and output linguistic  

variable.

(3) deciding on the types and the derivation of fuzzy control rules.

(4) designing the inference mechanism , which includes a fuzzy implication

and a compositional operator, and the interpretation of sentence

connectives AND and ALSO.

(5) choosing a defuzzification operator.

~ For (1) and (2) , there are two methods for making the choice 
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① We can use experience and engineering knowledge to select the possible and

proper input-out variables and then use a heuristic cut-and-try procedure to

find a proper fuzzy partition and a trial-and-error approach to find suitable

membership functions.

② We can use learning or self-organization techniques.

~ For (4) and (5) , three is no systematic method. Most practitioners use empirical

studies and results to provide guidelines for these choices. 

~ For (3) the determination of fuzzy control rules depends heavily on the nature

of the controlled plants. The followings are methods for the derivation of fuzzy

control rules.

① Expert experience and control engineering knowledge:

~ Fuzzy control rules are designed by referring to a human operator’s and/or a

control engineer’s knowledge.
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~ More specifically, we can ask a human expert to express his or her

knowledge in terms of fuzzy implications , that is , to express his know-how

in fuzzy IF-THEN rules.

~ Finally , a heuristic cut-and-try procedure is used to fine-tune the fuzzy

control rules.

~ Disadvantage

(a) An operator may not be able to verbalize his or her knowledge.

(b) It may be difficult for a control engineer to write down control rules

because the controlled process is too complex.

② Modeling an operator’s control actions:

~ We can model an operator’s skilled actions or control behavior in terms of

fuzzy implications using the input-output data connected with his control

actions.

5-43

~ Then we can use the obtained “ input-output model” as a fuzzy controller.

~ Ex: Sugeno’s fuzzy car 

[ Sugeno and Murakami, 1985, Sugeno and Nishida , 1985. ].

③Based on learning (or self-organizing):
~ Currently many research efforts are focused on emulating human learning

mainly on the ability to create fuzzy controls rules and to modify them based

on experience.

~ Examples are designs by neural networks, evolutionary algorithms, or swarm  

intelligence algorithms.

(4) Mathematical derivation based on plant mathematical model.
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• Stability analysis of fuzzy control systems.

~ Tanaka and Sugeno [1992] used Lyapunov’s direct method to perform 

stability analysis of fuzzy control systems where the fuzzy rules are of TS   

type

~ Consider the following fuzzy system with zero input:

i
1

1

R :  IF   ( ) is  AND  AND ( 1) is  , 

      THEN   ( 1) ( )   ( - 1)

      where   1,  2,   , .

The consequent can be written as 

( 1) ( )  ,   ( ) [ ( ),  ( 1),   , (

i i
n

i i
n

i

x k M x k n M

x k a x k a x k n

i r

x k A x k x k x k x k x k

− +

+ = + + +
=

+ = = − −

"
"

"

K K K " 1)]Tn +
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1 2

1 2 1

1

1

0 0 0

1 0 0 0

and    0 1 0 0

0 0 1 0

( )
( 1)           ( )

( ( )) ( ( 1))  ( ( 1)).i i i
n

i i i i
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i i
i
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i
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a a a a

A

A x k
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x k x k x k nµ µ µ

−

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Φ
+ = ∗

Φ

Φ = ⋅ − − +

∑

∑

"
"
"

# # " # #
"

K
K """

"

where x0(•) denotes the crisp value of x(•) at a specific instance.
Theorem 1:
Consider a discrete system 

where                                    is an n×1 function vector with the property that 
for all k. Suppose that there exists a scalar function               continuous 

in          such that

( 1) ( ( )).x k f x k+ =K K

( ) ,  ( ( ))nx k f x k∈ℜK K

( ( ))V x k
K

( )x k
K
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( )0 0f =
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        (a) (0) 0

        (b) ( ( )) 0  for  ( ) 0

        (c) ( ( )) approaches infinity as ( )

        (d) ( ( )) 0 for ( ) 0

Then the equilibrium state ( ) 0 for all  is asymptot

V

V x k x k

V x k x k

V x k x k

x k k

=
> ≠

→ ∞

∆ < ≠
=

K
KK K

K K
KK K
KK

ically

stable in the large , and ( ( )) is a Lyapunov function.

If  is a positive-definite matrix such that

             0      0

where ,  ,  ,    then  2

Theorem 2:

0

pf

T T

n n T T

V x k

P

A PA P and B PB P

A B P A PB B PA P×

− < − <
∈ℜ + − <

K

:  2 ( ) ( ) 2

      ( ) ( ) -  

since  is a positive-definite matrix.

                  ( ) ( ) 0.

             the conclusion of the theorem follows

T T T T T
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A PB B PA P A B P A B A PA B PB P

A B P A B A PA P B PB P
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A B P A B
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∴ .
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( ) ( )

[( ) ] [( ) ]
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T T

T

T

x A B P A B x

A B x P A B x

v Pv

− − −
= − − −

= − ≤

K K
K K

K K

Theorem 3:

[Tanaka and Sugeno, 1992] The equilibrium of a fuzzy system described by 
Eq.(*) is globally asymptotically stable, if ∃ a common positive-definite matrix 
P for all the subsystems such that

pf:   Choose a scalar function ( ( )) such that 

( ( )) ( )  ( ),    ( )

where  is a p.d. matrix.
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       where 0 ,             and   0

       ( ( )) is a Lyapunov function and the fuzzy system is globally 

           asymptotically stable.
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~A TS fuzzy controller can be designed using TS-fuzzy model by using the

  antecedent part of the TS fuzzy model as that o

Parallel distributed compensa

f the TS fuzzy contrtoller

~In

tion 

 this

(P

 

D )

e

C

cas

i

, we can use a proper linear control method for each pair of plant

  and controller rules. This design approach is called .

  Ref: .   . . ,       :K Tanaka and H O Wang Fuzzy control systems design and ana

PD

lysis

C

1

 

             ,   , ,  2001. 

~Discrete-time TS fuzzy model

  R :  IF   ( ) is  AND  AND ( 1) is  , 

          THEN   ( 1) ( ) ( ),           

i i i
n

i i

a

linear matrix inequality approach New York Wiley

x k M x k n M

x k A x k B u k

− +

+ = +

"
K K K

1

1

                   1,  2,   ,  .

  The output is 

[ ( ) ( )]
                ( 1)                       (1)

~ A PDC-type TS fuzzy controller which uses full state feedback is

  Co
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A x k B u k
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1ntrol rule : IF   ( ) is  AND  AND ( 1) is  , 

                         THEN   ( ) ( ),                 1,...,
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1

1

Output of the TS fuzzy controller

( )
                                ( )                     (2)

By substituting Eq. (2) to Eq. (1), we have the controlled output of the plant

       

r

i i
i

r

i
i

K x k
u k =

=

Φ
=

Φ

∑

∑

K
K

1 1

1 1

( ) ( )

         ( 1)            (3)

 

The equilibrium of the discrete-time TS fuzzy control system (i.e. 0) is gl

 4 :   

obally

asym c

.

ptoti

r r

i j i i j
i j

r r

i j
i j

Theorem Stability conditi
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ally stable if there exists a common positive definite matrix  such that

         ( ) ( ) 0,   for all , 1, 2,..., .                   (4)

R emark: When the ' , 1, 2,..., ,  are pre-dete

T
i i j i i j

i

P

A B K P A B K P i j r

K s i r

+ + − < =

= rmined, it is suggested that  can 

                be determined numerically by solving the Linear Matrix Inequalities (LMIs).

P
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2

2

1

1 1

~ It is noted that Eq. (4) has  LMIs. By grouping the same terms in Eq. (3),

   we have

( ) ( ) 2 ( )

          ( 1)                    (5)

  where

           

r r

i i i i i j ij
i i j

r r

i j
i j

r

A B K x k G x k
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K K
K

 5 :  

( ) ( )
    ,   ,

2
  This yields a less conservative stability condition.

The equilibrium state of the discrete-time TS fuzzy contr s
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i i j j j i
ij

Theorem Less conservative stability condi

A B K A B K
G i j
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r

ti

+ + +
= < ≤

ystem in Eq. (5) 

(namely, 0) is globally asymptotically stable if there exists a common symmetric

positive definite matrix  such that

             ( ) ( ) 0,  1, 2,..., ,             T
i i i i i i

x

P

A B K P A B K P i r

=

+ + − < =

KK

           (6)

                       0,   T
ij ijG PG P i j r− < < ≤
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 1. The number of LMIs for Eq. (6) is ( 1) / 2. 

      Eq. (6) also has the advantage of the relation of the stability criterion 

      of Eq. (4). Some standard feasibility problems t

Remark

hat  are i

s:

r r +

nfeasible from

      Eq. (4) can be solved from Eq. (4).

2. The sufficient condition for the stability of Eq. (6) can be used only for 

     the purpose of checking of the stability of the TS fuzzy control system in 

     which the feedback gains, ' , 1,.... , are pre-determined by a proper 

     controller design method.
iK s i r=
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1 1 1

2 2 2

1 2
1 2

1

Example:

Consider the following fuzzy model:

:  IF ( ) is ,  THEN ( 1) 2.178 ( ) 0.588 ( 1) 0.603 ( )

:  IF ( ) is ,  THEN ( 1) 2.256 ( ) 0.361 ( 1) 1.120 ( )

( 1) ( 1)
  ( 1)

R x k M x k x k x k u k

R x k M x k x k x k u k

x k x k
x k

+ = − − +
+ = − − +

Φ + + Φ +
⇒ + =

Φ 1 2
2

1 1 1

2 2 2

1 2
1 2

1 2

1

              ,  : firing strength.

FLC:

        R : IF ( ) is , THEN ( ) 2.109 ( ) 0.475 ( 1)

        R : IF ( ) is , THEN ( ) 1.205 ( ) 0.053 ( 1)

( ) ( )
   ( )

   

x k M u k x k x k

x k M u k x k x k

u k u k
u k

x

Φ Φ
+ Φ

= − + −
= − + −

Φ + Φ
⇒ =

Φ + Φ

⇒ 1 2 1 2

1 2 1 2

2 1 2 1 2

1 2 1 2

0.906 1.451 0.302 0.556
( 1) ( ) ( 1)

0.106 0.906 0.171 0.302
        ( 1) ( ) ( 1)

k x k x k

x k x k x k

Φ + Φ − Φ − Φ+ = + −
Φ + Φ Φ + Φ

− Φ + Φ Φ − Φ+ = + −
Φ + Φ Φ + Φ
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1 2
1 2

1 2

2 2 2 2
1 1 2 2 1 1 2 2

2 2
1 2 1 2

       Method 1: by Theorem 3    

       Hence , 

( 1) ( 1)
       ( 1)

0.906 1.345 0.906 0.302 0.385 0.302
       ( ) ( 1)

( ) ( )

[0.906

       

x k x k
x k

x k x k

Φ + + Φ ++ =
Φ + Φ

Φ + Φ Φ + Φ Φ + Φ Φ + Φ= − −
Φ + Φ Φ + Φ

Φ

=

2 2
1 1 1 2 1 2

2 2
2 2

2 2
1 1 2 2

11 1 1 11
11

( ) 0.302 ( 1)] [1.345 ( ) 0.385 ( 1)]

                     [0.906 ( ) 0.302 ( 1)]

2

            S : IF ( ) is (  AND ) , THEN ( 1) ( )

            2  

x k x k x k x k

x k x k

x k M M x k A x k

− Φ − + Φ Φ − Φ Φ −

+ Φ − Φ −
Φ + Φ Φ + Φ

+ =

⇒ ×

K K

12 1 2 12
12

22 2 2 22
22

11 12

  S : IF ( ) is (  AND ) , THEN ( 1) ( ) ( )

            S : IF ( ) is (  AND ) , THEN ( 1) ( )

        where 

0.906 0.302 0.672 0.193
        ,   

1 0 1 0

x k M M x k A x k

x k M M x k A x k

A A

⎫
⎪

+ = ∗∗⎬
⎪+ = ⎭

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢
⎣ ⎦ ⎣

K K
K K

22

0.906 0.302
,  

1 0
A

−⎡ ⎤
=⎥ ⎢ ⎥

⎦ ⎣ ⎦
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11 11 12 12 22 22

4.19 0.88
   Let      

0.88 1.38

   Then we can verify 

          0  ,  0 ,  0.

    From Theorem 3, the fuzzy control system is globally asymptotiaclly stable.

Method 

T T T

P

A PA P A PA P A PA P

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

− < − < − <

[ ]1 1 1

2 2 2

1 1 1 2 2 2

1 1
12

2: (By Theorem 5)

2.178 0.588 0.603
,  ,  2.109 0.475

1 0 0

2.256 0.361 1.120
,  ,  [ 1.205   0.053]

1 0 0

0.9064 0.302 0.9063 0.302
,

1 0 1 0

(

A B K

A B K

A B K A B K

A B K
G

−⎡ ⎤ ⎡ ⎤
= = = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
= = = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
+ = + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
+= 2 2 2 1

0.6727 0.1925) ( )

1 02

4.19 0.88
Let ,  Theorem 5 is satisfied.

0.88 1.38

A B K

P

−⎡ ⎤+ + = ⎢ ⎥
⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦
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Remarks: (with u(k) absent in consequent)

1. All the Ai matrices are stable matrices if ∃ a common positive-definite matrix P.

However, a common positive-definite matrix P obviously does not always exist

even if all the Ai matrices are stable matrices.

2. A fuzzy system may be globally asymptotically stable even if there does not

exist a common positive-definite matrix P.

3. A fuzzy system is not always globally asymptotically stable even if all the  Ai

matrices are stable matrices.

4. In the following theorem , a necessary condition for ensuring the existence of a

common positive-definite matrix P is given.

Theorem 6: [Tanaka and Sugeno , 1992]

Assume that Ai is stable , nonsingular matrix for i=1, 2, … ,r. AiAj is a stable 
matrix for i , j=1, 2, … ,r if  ∃ a common positive-definite matrix P such that

Remark:

Theorem 6 shows that if one of the AiAj matrices is not a stable matrix , then

a common positive-definite matrix P. 

1 1 1 1

1 1

                      0.      (*)

pf:  from (*) , we have 

                       ( ) 0,      since   ( ) ( ) .

      Therefore, ( ) ( ),     for 1,  2,  , .

      from

T
i i

T T T
i i i i

T
i i

A PA P

P A PA A A

P A P A i r

− − − −

− −

− <

− < =

< =

"

"

1 1

  (*)   

                 ( ) ( ) ,         ,   1,  2,   ,  .

                 0

                   must be a stable matrix for  ,  1,  2,   , .

T
i i

T T
i i j j

T T
j i i j

i j

A PA P

A PA A P A i j r

A A PA A P

A A i j r

− −

<

⇒ < =

⇒ − <

⇒ =

"

"

∃
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• Parameter region (PR):

~ The PR representation graphically shows locations of fuzzy IF-THEN rules in

consequent parameter space.

Example:

Consider the following fuzzy system ( fuzzy system 1 ):

Consider another fuzzy system ( fuzzy system 2 ):

1 1

2 2

3 3

1 2

Rule 1 : IF ( ) is C  , THEN ( 1) 0.1 ( ) 0.1 ( 1)

Rule 2 : IF ( ) is C  , THEN ( 1) 0.3 ( ) 0.1 ( 1)

Rule 3 : IF ( ) is C  , THEN ( 1) 0.1 ( ) 0.3 ( 1)

0.1 0.1 0.3 0
          

1 0

x k x k x k x k

x k x k x k x k

x k x k x k x k

A A

+ = + −
+ = + −
+ = + −

⎡ ⎤
⇒ = =⎢ ⎥

⎣ ⎦
3

.1 0.1 0.3
      

1 0 1 0
A

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 1

2 2

3 3

Rule 1 : IF ( ) is B  , THEN ( 1) 0.1 ( ) 0.1 ( 1)

Rule 2 : IF ( ) is B  , THEN ( 1) 0.3 ( ) 0.1 ( 1)

Rule 3 : IF ( ) is B  , THEN ( 1) 0.1 ( ) 0.3 ( 1)

x k x k x k x k

x k x k x k x k

x k x k x k x k

+ = + −
+ = + −
+ = + −
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4 4

5 5

1 2 3

4

Rule 4 : IF ( ) is B  , THEN ( 1) 0.2 ( ) 0.2 ( 1)

Rule 5 : IF ( ) is B  , THEN ( 1) 0.1 ( ) 0.15 ( 1)

0.1 0.1 0.3 0.1 0.1 0.3
                

1 0 1 0 1 0

0.2 0.2
         

1 0

x k x k x k x k

x k x k x k x k

A A A

A

+ = + −
+ = + −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⇒ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡= 5

0.15 0.15
      

1 0
A

⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Rule 1

Rule 3

Rule 4

Rule 5

Rule 2

0.30.1

0.1

0.3

coefficient of x(k)

(b) PR of fuzzy system 2.

Rule 1

Rule 3

Rule 2

coefficient of x(k)

(a) PR of fuzzy system 1.

0.30.1

0.1

0.3

coefficient of x(k-1)
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~ in fuzzy system 1 , each plotted point corresponds to each edge of the

parameter region.

~ in fuzzy system 2 , the PR constructed using the plotted points of rules 1-3

includes plotted points of rules 4 and 5.

~ Rules 1~3 of fuzzy system 1 or fuzzy system 2 are edges of the PR , they are

said to be edge rules. The consequent matrices A1 , A2 and A3 in edge rules

are said to be edge matrices. 

~ A fuzzy system that consists of only of edge rules is said to be a minimum

representation.

~ Obviously , fuzzy system 1 is a minimum representation , while fuzzy system

2 is not.

~ The following theorem is important for checking stability in the case of 

non-minimum representation.
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Theorem 5: [ Tanaka and Sano , 1993 ]

Remark:

1. The above theorem indicates that the stability of a fuzzy system can be

checked by applying the Tanaka-Sugeno theorem (Thm. 3) to a minimum

representation of fuzzy system.

2. In fuzzy system 2 of the above example , 

A4=0.5A2+0.5A3 and A5=0.5A1+0.25A2+0.25A3. Therefore , a

minimum representation of fuzzy system 2 is equivalent to fuzzy system 1.

Hence , it’s found from Thm. 5 that fuzzy system 2 is stable if fuzzy

system 1 is stable.

1 1

Assume that  is a positive-definite matrix. If 0

for 1,  2,   ,  , then 0, where  is nonedge matrix

such that 

               ,   where    1  and  0.

T
i i

T

r r

i i i i
i i

P A PA P

i r A PA P A

A s A s s

∗ ∗ ∗

∗

= =

− <

= − <

= = ≥∑ ∑

"
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