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Chapter 5. Fuzzy Logic Control System

~ In contrast to conventional control techniques, fuzzy logic control (FLC) is
best utilized in complex ill-defined processes that can be controlled by a skilled
human operator without much knowledge of their underlying dynamics.

~ The basic idea behind FLC isto incorporate the "expert experience" of a
human operator in the design of the controller in controlling a process whose
Input — output relationship is described by collection of fuzzy control rules (e.g.,
|F-THEN rules) involving linguistic variables rather than a complicated
dynamic model.

~ The utilization of linguistic variables, fuzzy control rules, and approximate
reasoning provides a means to incorporate human expert experiencein

designing the controller.
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~ FLC isstrongly based on the concepts of fuzzy sets, linguistic variables and
approximate reasoning introduced in the previous chapters.
~ This chapter will introduce the basic architecture and functions of fuzzy logic
controller, and some practical application examples.
~ A typical architecture of FLC is shown below, which comprises of four

principal comprises. afuzzifier, afuzzy rule base, inference engine, and a

defuzzifier.
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~ If the output from the defuzzifier is not a control action for a plant, then the
system is fuzzy logic decision system.

~The has the effect of transforming crisp measured data (e.g. speed is
10 mph) into suitable linguistic values (i.e. fuzzy sets, for example, speed istoo
slow).

~The stores the empirical knowledge of the operation of the
process of the domain experts.

~The iIsthe kernel of aFLC, and it has the capability of
simulating human decision making by performing approximate reasoning to
achieve adesired control strategy.

~The is utilized to yield a nonfuzzy decision or control action from an

inferred fuzzy control action by the inference engine.

- Input and output spaces. >4

~ A proper choice of process state variables and control variablesis essential to
characterization of the operation of afuzzy logic control system (FLCS).

~ Expert experience and engineering knowledge play an important role during
this state variables and control variables selection process.

~ Typically, the input variablesin aFLC are the state, state error,
state error derivative, state error integral, and so on.

~ The input vector x and the output state vector y can be defined, respectively,

= (6 U AT 2 T it )

y={(34 VAT AT, e T ey ey })\izl,.._m}
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where the input linguistic variables x; form afuzzy input space U=U, xU, ...x
U, and the output linguistic variables y, form afuzzy output space V=V, xV,

Vi

~ Aninput linguistic variable, variable x;, is associated with aterm set
— 1 2 K
T(Xi)_ {Txi 7Txi "“’Txi }

~ Thesize (or cardinality) of atermset, | T(x;) | =k; iscalled the fuzzy
partition number of x;.

~ Diagrammatic representation of afuzzy partition 4

N Z P NB NM NS zE PS PM PB
-1 0 1 1 1
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~ For atwo-input FLC, the fuzzy input space is divided into many
overlapping grids.
~ Grid-type partition: L |lL |s
N: Negative <
Z: Zero N s| M| S
P. Positive C
L: Large S | L
S: Small a
M: Medium ®

N Z P

Ruleset. R1:IFeisNAnddeisN ThenuisL
R2:IFeisZ AnddeisN ThenuisL
R3:IFeisPAnddeisN ThenuisS
R4: IFeisN AnddeisZ ThenuisS
R5: IFeisZAnddeisZ ThenuisM
R6: IFeisPAnddeisZ ThenuisS
R7:IFeisN AnddeisP ThenuisS
R8: IFeisZ AnddeisP ThenuisL
R9: IFeisPAnddeisP ThenuisL




~ Furthermore, the fuzzy partitions in afuzzy input space determine
the maximum number of fuzzy control rulesin aFLCS.

~ In the case of atwo-input-one-output fuzzy logic control system, if
| T(xy) | =3and | T(x,) | =7, then the maximum number of fuzzy
control rulesis 3x7.

~ Theinput membership functions 4, , k = 1,2, - k; and
the output membership functions ,uf,i , 1=1,2, .-/, usedina
FLC are usually parametric functions such as triangular functions,
trapezoid functions, and bell-shaped functions.

~ The triangular-shaped functions and the trapezoidal-shaped functions,
can be represented by L-R fuzzy numbers, while the bell-shaped

membership functions can be defined as

u, (x) = exp(- By
o.

i
wherem, and ¢ ; specify the center location and the width of the bell-shaped
function, respectively.

~ Proper fuzzy partition of input and output spaces and a correct choice of
membership functions play an essential role in achieving a successful FLC

design.

~ Traditionally, a heuristic trial-and-error procedure is usually used to
determine an optimal fuzzy partition.

~ A promising approach to automating and speeding up these design choicesis
to provide a FLC with the ability to learn its input and output membership

functions and fuzzy control rules.




- Fuzzfier >-8

~ A fuzzifier performs the function of fuzzification which is a subjective
valuation to transform measurement data into valuation of a subjective value.

~ It can be defined as a mapping from an observed input space to labels of
fuzzy setsin aspecified input universe of discourse.

~ In fuzzy control application the observed data are usually crisp (though they
may be corrupted by noise).

~ A natural and simple fuzzification approach isto convert a crisp value,x, ,into
afuzzy singleton, A, within the specified universe of discourse.
That is, the membership function of A, 1 ,(X), isequal to 1 at the point x,, and
zero at other places. This approach iswidely used in FL C applications because
it greatly ssimplifies the fuzzy reasoning process.
In this case, for a specific value x; (t) at timet , it is mapped to the fuzzy set

T, with degree ﬂ>1<1 (X; () and to the fuzzy set T with degree ﬂfi (X; (1))

and so on. .
~ In amore complex case, where observed data are disturbed by random noise,

afuzzifier should convert the probabilistic data into fuzzy numbers, that is,
fuzzy (possibility) data.
- Fuzzy Rule Base

~ Fuzzy control rules are characterized by a collection of rules
in which the and involve linguistic
variables.

~ The genera form of the fuzzy control rulesin the case of multi-input-single-

output systems (MISO) is:

wherex, ..., y and z are linguistic variables representing the process state
variable and the control variable, respectively, and A, ,... ,B,,C arethe
linguistic values of the linguistic values of the linguistic variablesx, ..., y and

z inthe universe of discourse U, ...,V and W.
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~ Another form :

wheref; (X, ...,y) isafunction of the process state variables x, ...,y.

~ Both fuzzy control rules have linguistic values as inputs and either
linguistic values or crisp values as outputs.

* Inference Engine:

~ The inference engine is the kernel of FL C in modeling human decision
making within the conceptual framework of fuzzy logic and
approximate reasoning.

~ The generalized modus pones (forward data-driven inference) plays an
especially important role in approximate reasoning.

~ The generalized modus pones can be rewritten as

511
Premise 1. IFXisA, THENYyisB. ... *)

Premise 2: X isA’

Conclusion: y isB’

where A, A’, B and B’ are fuzzy predicates (fuzzy sets or relations) in the
universal setsU, U ,V and V, respectively.

~ In general, afuzzy control rule ( e.g. premise 1 in Eq (*)) isafuzzy relation
which is expressed as afuzzy implication, R = A— B.

~ According to the compositional rule of inference conclusion, B’ can be obtained
by taking the composition of fuzzy set A’and the fuzzy relation (here the fuzzy

relation is afuzzy implication) A—B:

B=A'0R=A’0 (A>B). — *)
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~ In addition to the definitions of fuzzy composition and implication givenin
Chap. 6, there are four types of compositional operators that can be used in the
compositional rule of inference. These correspond to the four operations

associated with the t-norms.

— Max-min operation.
—Max product operation.
—Max bounded product (max — © ) operation.

—Max drastic product (max — 7\ ) operation.

~ In FLC applications, the max-min and max-product compositional operators
are the most commonly and frequently used due to their computational
efficiency.

Let max— Yy represent any one of the above four composition operations.
Then (*) becomes:

B=A"%WR=A"J- (A —~B) >13

Hy (V) = maxX[ 1, (U) ety g (U, V)]

~ Asfor the fuzzy implication A — B, there are nearly 40 distinct fuzzy

implication functions described in the existing literature, e.g. (seeTable7.1)

Rule of Fuzzy Implication Implication Formulas | Fuzzy Implication
;UAAB(U ’ V)

Rc: min operation[Mamdani] | a—» b=aab =1, (U) A g (V)
Rp: product operation[Larsen] | g~ b=a -+ b = p1, (U) 15 (V)
Rypbounded product a D=0V (2#D-1) |=0 v [, (u)+ 5 (v) 1
R p-drastic product as b=( a b=1

b a=1 .

0 a b<l
Ra arithmetic rule[Zadeh] | &~ B=A (L-a+b)
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~ The fuzzy implication rules defined in Table 7.1 are generated from the fuzzy
conjunction, fuzzy digunction, or fuzzy implication by employing various t-
norms or t-conorms.

~ The above four implications are al t-norms. For example, Mamdani’s min
fuzzy implication R, is obtained if the intersection operator is used in the
fuzzy conjunction. (fuzzy conjunction #a-gs(X,Y) = t(i, (X), 5 (¥)). )

~ Larsen ’s product fuzzy implication R, is obtained if the algebraic product is
used in the fuzzy conjunction.

~ Rbp and Rdp are obtained if the bounded product and the drastic product are
used in the fuzzy conjunction.

Ex : Assumefuzzy set A’ isasingleton at uy; i.e.

Uy (Ug)=1and u,.(u)=0 foru=u,
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JINCY.

> >
> >

U, u \%

The consequent B’ under the fuzzy implications A — B isasfollows, where
1, (Uy) =2a with a=0.3 (dotted line) And a=0.7 ( solid line).

i B
/1 \a=0.7
| a03
(DRc:aAb  @Rsia-b (3 Ry0v(arbl) () Ry [ 2 7
Hig (V) = Max{ £, (U)5[42a(U) = £ (W]} b a=1
=15(ttp (Ug) = 115 (V) = 22, (Ug) = 15 (V) 0 ab<1
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~ Among the various fuzzy implicationsin Table7.1, Mamdani’ s fuzzy

implication method R associated with the max-min composition isthe most
frequently used in fuzzy logic control.
Ex7.2: Premise 1. IFxisA, THEN yisB

Premise 2: X iISA’

Conclusion:yisB’.

derive the conclusion B’, when
A=A, A’=VERY A, A°=MORE OR LESS A, A’=NQOT A.
Here, Mamdani’ s method R and max-min composition are adopted.
(@ For A’=A B'=A 0 R:
e (V)= V{naW AC W) Arg()) = V{waUALgW)}
= \U/MA(U)/\ (V) =1A ug(v) = ugv)

(b) For A’= A2 (VERY A). 5-17
te(V) = VELZAWA (A A 2g()) 1=V {22 (WA 15}
=1 Apg(v)= 1gv)
(c) For A’=1—A (NOT A).
te() = VA= gaW)A(aU) ArgV)) }
=VAQ= A A AW} Ang(v) = 0.5 A g(V).

Table 7.2 Summary of inference results for generalized modus pones
(max-min composition).

A Very A (A%  Moreor LessA (A1?) Not A.
Re | #8 Ug Up 05 A
U
Rp Ug Uy Up (1+Z )
1+ug 3+2Ug — S+ 4u 5+4u. -1 °
Re |5 T s 1
Rs | ts 1% Ny/A 1




~ The above results are all based on the max-min composition. 5-18
~for A’=A, B'=A o R, = (1+B)/2 = B.
.. R, does not satisfy normal modus pones if max-min composition is used.
~Let]) and A denote the max bounded product and the max drastic product
compositions, respectively. Then we have
B'=A0 R,=ALR,=B
that is, it satisfies the modus ponens.
« Application of the generalized modus ponesin theinference engine of a
FLC
~ In most cases, the fuzzy rule base has the form of multi-input-multi-output
(MIMO) system.
R= {RlMIMO’ RZMIMO’ RSMIMO’ e RnMIMO} '
where R'y,,uo represents theith rule:
IF(x isA;AND ... ANDy isB;) THEN (Z,isC},, ..., Z,isCq)

Z,.: gth control variable. 5-19

Ca.: output predicate of the gth control variable.
The precondition of Ri,,,,o forms afuzzy set A X ... X B, in the product
space UX ... XV, and the consequent is the union of q independent control
actions.
~ R\, ;mo May be represented as a fuzzy implicatiorl1
RiI\/IIMO : (Ai X"'XBi) — (Ci1+"'+c|q) :U(Ai ><"'><Bi) - Cuk

k=1
Where + represents the union of g independent control actions or variable.

R ={QRM|MO}={O[(N x-+xB,) - (ci1+---+Cﬁ)]}

i=1

:{UO [(Aix---xBi)eCik}}

i=1lk=1

:{ | [(Aix---xBi)eCik]}

= {RB%\/IISO , RBi/IISO » 'RB(I:\l/IISO }




eg.
R,uo: IFXisA, ANDyisB, THEN Z, isC" AND Z, is C?
IFxisA, ANDyisB, THEN Z, isC. AND Z, is C?
IFxisA, ANDyisB, THEN Z, isC, AND Z, is C:
can be represented by
RB}, s : IFXisA, ANDyisB, THEN Z, isC;
IFxisA, ANDyisB, THEN Z, isC;
IFxisA, ANDyisB, THEN Z, isC}

RB2,,: IFXisA, ANDyisB, THEN Z, isC?
IFxisA, ANDyisB, THEN Z, isC?
IFxisA, ANDyisB, THEN Z, isC:

5-20
~ Observation:

(1) The above equation shows that the fuzzy rule base R of a FLC is composed
of aset of g subrules bases RB',,,o, , With each subrule base RB',;,55
consisting of n fuzzy control rules with multiple process state variables and
asingle control variable.

(2)Thus, aMIMO system with n inputs and q outputs can be decomposed into
g n-input-single-output subsystems, and each of these q subsystems has a
set of subrule base {RB,,; 10} -

(3)Hence, instead of considering fuzzy control rulesfor aMIMO system, we
will consider fuzzy control rules only for aMISO system.

~ The general form of aMISO fuzzy control rulesin the case of two-input-single-

output fuzzy systemsis
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Input . XiSA’ ANDyisB’
Rt . IFxisA;ANDyisB,;, THEN ZisC,
(*) ALSO R*> : IFxisA,ANDyisB,, THEN ZisC,
ALSO R* : IFxisAyANDyisB,, THEN ZisC,
Concluson : Z isC'.

~ In the above rules, the connectives AND and ALSO may be interpreted as either
intersection (M) or union (U) for different definitions of fuzzy implicationin
Table 7.1.
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Theorem 1:

Consider the whole set of rulesin Eq (*), with minimum t-norm and

Mamdani ’s minimum fuzzy implication R, the conclusion C’ can be
expressed as a unification of the individual conclusions of fuzzy control rules.
That is,

C=(A",B)o 0 R.(A, ,B ;C)= U(A', B) oR.(A,,B;;C)

i=1 i=1
pf: e (W) = (24 (U) A 2z (V) © V(luRl (uv,w),---, M (uv,w))
= X]{(ﬂA’ (U) Aty (V) A [V (g (UVW), -ty (UVW)) ]}
=V V1Chb (6 ) 1 e, (AT, Lt () A e () A, ()]

=V {12t (U) A g (1) © e, (VW) [y (6D 1 () © ity (VW)

where g, (UMW) = 24y (U) A g, (V) A thg (W)




Remark: 5-23

(1) The above theorem isaso true for Re. Ryp, Ryp-

(2) The rule connective ALSO is interpreted as the union operator (U) for R¢, R,
R,rand Ry, fuzzy implication.

(3) On the other hand, the connective ALSO isinterpreted as the intersection

operator (M) for R,, R,,, Ry, R,,and Ry fuzzy implications, so, we have

n

C'=(A",B) O_ﬁ R.(A B ;C)=[)(A",B)oR,(A B;C).

i=1 i=1
(4) The above theorem still holds if we use the max-product composition

instead of the max-min composition.
~ We shall focus on two special fuzzy implication rules R, and R, which are

most commonly used in FLCS.
~ Since in fuzzy control the inputs are usually fuzzy singletons, namely, A”"=u,

and B" =V, in Eq. (*), the following theorem plays an important rolein FLC
applications.
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Theorem 2:

Consider the max-min compositional operator o and minimum t-norm. If the
inputs are fuzzy singletons, namely, A"=u, and B"=v, , thentheresultsC’ in
Eq. (*) derived by employing Mamdani’s minimum operation rule R, and
Larsen ’s product operation rule Ry, respectively, may be expressed simply as:

(**) R tie (W) = \}®i A He (w) = \i‘/ |:IUAi (Up) A Hp, (Vo)] N He, (w).

Rp !t (W) = .\T/(D‘ *He, (W) = \i]/ |:IUAi (Up) ANHg (Vo)]’ﬂci (w)

where @, denotesthefiring strength of the i-th rule which is a measure of
the contribution of thei-th rule to the fuzzy control action.




Pf: For R. :
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C=(A"B)oR.(A,,B;C,), i=12,n
He (W) = \/ [t (U) A g (DA 22, (U) A g (V) A i, (W) |

uv

= OV L4 ()t (] AN/ 1t 04) At O 1, ()
= [itn, (Up) A g, (V)] A e, (W)
W) = Ve ()= \/ [, (U0) .t (V)] ().
For Rp: ) )
C=(A"B)oR,(A,B:C), i=12-,n
e W) = \/ [0 () A e (V)] AL L1t (U) A i, (V)] s, (W)

u,v

= VAt (U) ALty (U)o i (WTF ANt (V) ALt (V)* 2, (W)]}

=t (Ug)etic (W) A pg (Vo)opic, (W)
= [/UAi (Uo) A Hg (uo)]',u(:i (W)

n

e () = /i )= \/ [ 1 (o) st (V) ot (.

i=1

Remarks: 5-26
1. Eq (**) isthe most frequently used in fuzzy control applications

2. For fuzzy input A" and B’

(AND: use t(a,b) =aAb, max-min composition, implication:R.
C=(A"B)°Rc(A,B;;C)

He, (W) = /[ 22 (U) A g (V)] A 12, (U) A g (V) At (W)]

u,v

={V [ta (W) Aty (] AN [t (V) A g (VT A e (W)

= (/'Ll, /\/U;) A He, (w)

(2)AND: use t(a,b) = a-b, max-product composition, implication:R;
C=(A"B)*Rp(A,,B;;C))

He (W) = \/ [ (Wt (V) ] 1, (U)ot (V)+ 1, (W)]

u,v

={V [ta (W) (W] [ (V)15 (V)]} 1, (W)

= (4 145t (W)




5-27

* Types of fuzzy reasoning 5-28
~ The two types of fuzzy reasoning currently employed in FLC
applications are as follows:

-First type (Mamdani type)
Assume that we have two fuzzy control rules as follows:
R!:IFxisA; ANDyisB, , THEN ZisC,.
R?:IFxisA,ANDyisB, ,THEN ZisC,.
then the firing strengths @, and @, of the first and second rules may be
expressed as
O, = ﬂAl(Xo) A ,usl(yo) and @, = lLlAZ(XO) A ,UBZ(yo)-
where 1 ,,(Xo) and 1 g,(Y,) indicate the degrees of partial match between
the user-supplied data and the data in the fuzzy rule base.
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(1a) Mamdani 's minimum fuzzy implication rule, R
In this mode of reasoning. the ith fuzzy control rule leads to the control
decision
He (W) = D@y A g (W).

Thefina inferred consequent C is given by

Ho(W) = pig, v pig, = [ @A s (W) |V ][®,Auc (W)]

The fuzzy reasoning processisillustrated as follows

INT A, K14 B, Hc14 C,

oA 1A 17 Ke
“ 1
0L / . 0 .
X i
| 2
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(1b). Larsen’s product fuzzy implication rule, Ry,

In this case, the ith fuzzy control rule leads to the control decision
He (W) = Djepc (W).

He (W) = He, vV Uey, = [q)lﬂucl(w)} v |:(I) 2'/“02(W):|

/1 fe
A )
3 Aﬁ e
0 | Y 0 Z 1
K2 e
17 By <
A 777777777777777 gg 0 YA




- Second type (TSK-type or TStype)

The consequent of aruleisafunction of input linguistic variables.
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~R:IFxisA; ... ANDyisB,, THEN z=f,(x, ..., y). Consider two fuzzy

control rules asfollows:
RL:IFxisA; ANDyisB;, THEN zisf,(x,y)
R2 IFxisA, ANDYyisB,, THEN zisf,(x,y)

~ When the inputs are x, and y,, the inferred values of the control action from

the first and second rules are f,(X,,Y,) and f,(Xo,Y,) , respectively. A crisp
control action is given by

7 = D, (X Vo) + P, (%, Vo)
D, +D,

~ This method was proposed by Takagi, Sugeno and Kang, and is usually
caled TSK-type or TS-type.
~In generd, f; (X, ...,Yy) isalinear combination of the input variables plus a

congtant. i.e. f =a’+a'x+---+a'y

» Defuzzfier
~A mapping from a space of fuzzy control action defined over an output
universe of discourse into a space of non-fuzzy (crisp) control actions.

~ A defuzzifier is necessary when fuzzy reasoning of the first type is used.

~ Two commonly used methods of defuzzification are the center of area
(COA) method and the mean of maximum (MOM) method.

~ COA:

(2) In the case of adiscrete universe of discourse.

LD LH(2)z,
Zeoa = n
Z lell’lc(zj)

where nisthe number of quantization levels of the output , z isthe

amount of control output at the quantization level j , and « (z)

represents its membership value in the output fuzzy set c.

5-32
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(2) a continuous universe of discourse.

. p()zdz
B IPREEE

~MOM:
~ Generates a control action that represents the mean value of al local
control action whose membership functions reach the maximum.

~ In the case of adiscrete universe,
. m Z

Zyom = Z_l

=1 M

where z; is the support value at which the membership function reaches

the maximum value ¢ (z) and mis the number of such support values.
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Ex 7.3:
We are given afuzzy logic control system with the following two fuzzy
control rules:
Rulel:IFxisA;ANDyisB,, THEN zisC,
Rule2:IFxisA,ANDYyisB,, THEN zisC,

Suppose X, and y, are the sensor readings for linguistic input variables x and

y and

(x—=2)/3 2<x<5 (x—=3)/3 3<x<6

X) = X) =
#a) {(S—X)IS 5<x<8 Hao(X) (9-X)/3 6<x<9
1 (y) = (y-5/3 5<y<8 s (y) = (y=4)/3 4<y<7
- (8-y)/3 8<y<il % (10-y)/3 7<y<10
(2= (z-1)/3 1<z<4 - (z-3)/3 3<z<6
Hel= (7-2)13 4<z<7 "7 |(9-2)/3 6<z<9

AND: minimum operation, Implication: Rc
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at timet, , wehavex,=4andy, = 8.

Uar(B) =23, 1p1(8) =1, 1 ax(4) =13, 18 =23
O, =min( £ a1(Xe) » 1 g1(Yo) ) =Min(Z3,1)=2/3

O, =min( i ao(Xe) » 1 p2Yo) ) =min(L/3, 2/3) = 1/3
1 2 2 2 1 1 1
. 2(5)+3(§)+4(§)+5(§)+6(§)+7(§)+8(§)
Zoop = =47
OA 1 2 2 2 111
s Heey s S s
3 3 3 3 3 3 3

Z;:,IOM =(3+4+5)/3=4.0

(L

Al Lgr B HLc
1 A, [/ SR 1 C
5 1
o] /A /N A
0 X | Y| O Z 213+
I a2 Az 1 gy B Lea C, 113+ 4 N
1 270 P AN
; oo 0 1524 Ravs Z
sl /\ AN 1234 56789
0x=4 X 0 ym=8 Y min0 Z

Ex: (TSK- type fuzzy rules)
Rulel:IFxisA; ANDyisB,;, THEN z=2+2x-4y
Rule2:IFxisA, ANDYyisB,, THEN z=1+3x+y
Suppose x,= 4 and y, = 8, find z=7?
Sol:
®,=2/3 and ® ,=1/3 (from previous example)
Rulel: z=2+2(4)-4(8) =-22
Rule2: z=1+3(4)+(8) = 21

222 +; @)y

2,1 3
3 3

Final output: z=




Example:

9
Qu't_put Vo) L _ri — |
. W Yt AT VTR
itk g _IJ.[,I d -

h Response of a s;nplé g:)nerl C .pl ant
error e=y, —y, control action:u
Normalized error: g, (t) = n, - e(t),
Normalized changein error: ce, (t) = n,, - (e(t) —e(t-T)),
Normalized increment in control action: du, (t) = du(t) - n,
n,, N, and ny,: normalization (scaling) factor
ut) =u(t—T)+ou(t)

Fuzzy rule: IF e (t) isP AND ce, (t) isN THEN ou,(t) isZ




Yao
D




| mplementation of fuzzy controller:
(1) The consequent is afuzzy singleton.
~Rulei:IF  x;isA; AND ... AND x,isA,
Then uisw..
., X, Input variables.
u . control output variable.

A;;: fuzzy set, where Gaussian membership function is used.

— m, : center of fuzzy set A,.
o, - width of fuzzy set A,.

(X)—eXp{( - 2Ny,
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~ Thefiring strength ® of rulei is
@, (X) = Hﬂ.,(x ) = exp{- Z( & ”) }
i
where the* algebraic product” is used for fuzzy AND operation.
or (I)i()—(): min(luil(xl)""nuin(xn))
wherethe“ min” operation is used for fuzzy AND operation.
~ Thefinal output of the fuzzy controller consisting of r rulesis:

Zr @, (X)w,

u(x) = -=%

> ® (%)
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Ex: Rulel:IFxisA1ANDYyisBl,THENuis4
Rule2:IFxisA2ANDyisB2, THEN uis6
Find z when inputs x0=4 and y0=8.

(1) Use product for AND operation.
(2) Use minimum for AND operation

Sol:
1
’ 2 2 (g)-4+(g)-6
= a(%) Has(Yo) =2 1=2 | _'3 A :§=4.5
®, = 11, (0) fi(ye) = L 2= 2 BN
2_1uA2 XO IUBZ yO 3 3 9
2
? 2 2 %)-4+(1)-6
D, = 115 (%) A ey (Yo) = - Al=— __3 3 :E
3 3 u 2 1 3
Z_IUAZ XO /uBZ yO 3 3 3
(2) The consequent is TSK type. 5-38

~Rulei:IF X isA; AND ... AND x,is A,
THEN u=a’+> a‘x = f,(X)
k=1 r
2. Pi(x)fi(%)
control output  u(x) = =—
2 2i(X)
i=1

(3) The consequent is afuzzy set.
~Rulei:IF x,isA;AND ... AND x,isA
Then uisB,. B, :afuzzy set.

@ The local mean-of-maximum method. (LM OM).
: 1.0
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For triangular functions, LMOM gives
_ 1
uH( D) = C+§(SR -5)1-9)).

1H(®,) isthe u-coordinate of the centroid of B

> ,(%) 4@, (%))

output  u(x)=-=

r

D D,(X)
i=1
(@ Based on center of area

IF B; isafuzzy set, with Gaussian membership fun.

Uy = exp{—(>—)%)
O;
3 (Mo)®, (%)
then u(x) ==L

> 0.0,(%) n
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» Antecedent part partition:
@ Grid-type partition:
N: Negative - L | L S R
Z:Zero IFx,isNandx,isN
P: Positive N s/ | M S ThenuisL
L: Large T L
S Small S | L

M: Medium K ><><
X

@ Flexible partition:
Z S
N S
- L

°x
X
[
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» Design Methodology of Fuzzy Control Systems.

~ The principal elements of designing a FLC include:

(1) defining input and output variables.

(2) deciding on the fuzzy partition of the input and output spaces and
choosing the membership functions for the input and output linguistic
variable.

(3) deciding on the types and the derivation of fuzzy control rules.

(4) designing the inference mechanism , which includes afuzzy implication
and a compositional operator, and the interpretation of sentence
connectives AND and ALSO.

(5) choosing a defuzzification operator.

~ For (1) and (2) , there are two methods for making the choice

5-42

(D We can use experience and engineering knowledge to select the possible and
proper input-out variables and then use a heuristic cut-and-try procedure to
find a proper fuzzy partition and a trial-and-error approach to find suitable
membership functions.

(2 We can use learning or self-organization techniques.

~ For (4) and (5) , three is no systematic method. Most practitioners use empirical
studies and results to provide guidelines for these choices.

~ For (3) the determination of fuzzy control rules depends heavily on the nature
of the controlled plants. The followings are methods for the derivation of fuzzy
control rules.

(D Expert experience and control engineering knowledge:

~ Fuzzy control rules are designed by referring to a human operator’ s and/or a

control engineer’ s knowledge.
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~ More specifically, we can ask a human expert to express his or her

knowledge in terms of fuzzy implications, that is, to express his know-how
in fuzzy IF-THEN rules.

~ Finally , aheuristic cut-and-try procedure is used to fine-tune the fuzzy
control rules,

~ Disadvantage
() An operator may not be able to verbalize his or her knowledge.
(b) It may be difficult for a control engineer to write down control rules

because the controlled process is too complex.

2 Modeling an operator’s control actions:

~ We can model an operator’s skilled actions or control behavior in terms of
fuzzy implications using the input-output data connected with his control

actions.

~ Then we can use the obtained “ input-output model” as afuzzy controller.
~ Ex: Sugeno’ s fuzzy car
[ Sugeno and Murakami, 1985, Sugeno and Nishida, 1985. ].

(®Based on learning (or self-organizing):

~ Currently many research efforts are focused on emulating human learning
mainly on the ability to create fuzzy controls rules and to modify them based
on experience.

~ Examples are designs by neural networks, evolutionary algorithms, or swarm
intelligence algorithms,

(4) Mathematical derivation based on plant mathematical model.
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» Stability analysis of fuzzy control systems.
~ Tanaka and Sugeno [1992] used Lyapunov’s direct method to perform
stability analysis of fuzzy control systemswhere the fuzzy rulesareof TS

type
~ Consider the following fuzzy system with zero input:

R': IF x(k)isM; AND --- AND x(k—n+1)isM| ,
THEN x(k+1)=ax(k)+ --- +ax(k-n+1)
where i=1 2, --- ,r.

The consequent can be written as

X(k+1) = Ax(k) , X(k)=[x(k), x(k=1), -+ ,x(k—=n+2]"

N | | N 5-46
a @ - 4, a
1 0 - 0 0
and A=|0 1 0 O
0 0 - 1 0
D @,A%(K)
X(k"‘l) — i=1 e (*)

2@
®, =, (%K) 1, (K= D)+ 41, (Yo (k=N +1)).

where x,(¢) denotes the crisp value of x(¢) at a specific instance.
Theorem 1.
Consider adiscrete systemx(k +1) = f (X(k)).
where X(k) e R", f (X(K)) isan nx1 function vector with the property that

f (0)=0 for all k. Suppose that there exists a scalar functionV (X(k)) continuous
in X(K) such that




(@ V(0)=0

(b) V(x(k)) >0 for x(k) =0

(c) V(x(k)) approachesinfinity as | (k)| — e

(d) AV (x(k)) < O for x(k) =0
Then the equilibrium state x(k) = 0 for all k is asymptotically
stableinthe large, and V (X(k)) is a Lyapunov function.

Theorem 2:
If P isapositive-definite matrix such that
A'PA-P<0 and B'PB-P<0
where A, B, Pe R™", then A'PB+B'PA-2P <0
pf: ATPB+B'PA-2P =—(A-B)'P(A-B)+ A"PA+B'PB-2P

=—(A-B)'P(A-B)+ A" PA-P+B'PB- P
since P is a positive-definite matrix.

-(A-B)'P(A-B)<0. - V'PV<0

.. the conclusion of the theorem follows.

—-x" (A-B)" P(A-B)x
=-{(A-B)X]" P[(A-B)x]

Theorem 3:

[ Tanaka and Sugeno, 1992] The equilibrium of afuzzy system described by
Eq.(*) isglobally asymptoticaly stable, if 4 acommon positive-definite matrix

P for all the subsystems such that

A'PA-P<0, ie{l 2,1}
pf: Choose a scalar function V (X(k)) such that
V(x(K)) = X" (k) P X(k), V = o as H)‘((k)H —> oo
where P isap.d. matrix.

AV (x(k)) =V (x(k +1)) =V (x(k))
= X"(k+1) P x(k+1) - X" (k) P %(K)

Yo A K) Y AXK
~E Sy rdE )X PRK)

2. 2.®
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YoA YA
X L) P (T ) - P R(K)
DY

Z DD X" (K)(A'PA - P)x(K)
_ l,]=1

r

2, &0,
l,]=1

zr;(cpi )2%" (K){ ATPA — P}x(K) + Z @@ X" (K){ A'PA + A’ PA — 2P} x(K)
_ 1=

i<]

== r <0
> o,
i,j=1
where ®, >0, and > @ >0
i=1
= V(X(k)) isaLyapunov function and the fuzzy systemis globally
asymptotically stable.
-Parallel distributed compensation (PDC) 5-50

~A TS fuzzy controller can be designed using TS-fuzzy model by using the
antecedent part of the TS fuzzy model asthat of the TS fuzzy contrtoller
~In this case, we can use a proper linear control method for each pair of plant
and controller rules. This design approach is called PDC.
Ref: K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: a
linear matrix inequality approach, New York,Wiley, 2001.
~Discrete-time TS fuzzy model
R': IF x(k)isM; AND --- AND x(k—n+1) isM| ,
THEN x(k+1 = A x(k)+Bu(k), i=1 2, -, .
The output is

> @ [A%(K) + Ba(k)]
(K +1) = 1= 1)

2@,
i=1
~ A PDC-type TS fuzzy controller which uses full state feedback is
Control rulei: IF x(k) isM; AND --- AND x(k—n+1) isM/ ,
THEN ua(k) = K, x(k), i=1..,r




Output of the TS fuzzy controller

Zd)i K, X(K)
a(k) ==+——— 2
2@,
i=1
By substituting Eg. (2) to Eg. (1), we have the controlled output of the plant
22O, (A+BK)X(K)
x(k+1) =22 — (3)
2.2 00,
i=1 j=1

Theorem 4: Sability condition.
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The equilibrium of the discrete-time TS fuzzy control system (i.e. X = 0) is globally
asymptotically stable if there exists a common positive definite matrix P such that

(A+BK,)"P(A+BK)-P<0, fordli,j=12,..,r. (4)

Remark: WhentheK, 's,i=12,...,r, are pre-determined, it is suggested that P can
be determined numerically by solving the Linear Matrix Inequalities (LMIs).

~ It is noted that Eq. (4) hasr?® LMIs. By grouping the same termsin Eq. (3),
we have 552

icpiZ(A + IS’IKi)X(k)+22r:CI)iCI)jGij7((k)
R(k+1) = = <] (5)

$Soa,

i=1 j=1

where
_(A+BK)+(A+BK)
i 5
Thisyields aless conservative stability condition.

, 1< <,

Theorem 5: Less conservative stability condition
The equilibrium state of the discrete-time TS fuzzy control systemin Eq. (5)

(namely, x = 0) is globally asymptotically stable if there exists acommon symmetric
positive definite matrix P such that

(A+BK ) P(A+BK)-P<0,i=12,..r, (6)
GPG,-P<0, i<j<r




Remarks: 5.53
1. The number of LMIsfor Eq. (6) isr(r +1)/2.

Eqg. (6) aso has the advantage of the relation of the stability criterion

of EQ. (4). Some standard feasibility problemsthat are infeasible from

Eq. (4) can be solved from Eq. (4).

2. The sufficient condition for the stability of Eq. (6) can be used only for
the purpose of checking of the stability of the TS fuzzy control systemin
which the feedback gains, K. 's,i =1,....r, are pre-determined by a proper
controller design method.
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Example:
Consider the following fuzzy model:
R': IFx(k) isM*, THEN x*(k +1) = 2.178x(k) — 0.588x(k —1) + 0.603u(k)
R?: IFx(K) isM?, THEN x*(k +1) = 2.256x(k) — 0.361x(k — 1) + 1.120u(k)
O x'(k+1) +D,x*(k+1)
D, +D,

= x(k+1)= ®,, D, : firing strength.

FLC:
R%: IF (k) isM?, THEN u}(k) = —2.109x(K) + 0.475x(k — 1)
R IF x(k) isM?, THEN u?(k) = —1.205x(k) + 0.053x(k — 1)
®,u'(K) + D,u’(K)
D, +D,

0.9060, +1451®, (. ~0302P; ~05560
D, +P, D, +D,
~01060, +0.9060,  \\  0.1710, ~03020

D, + D, D +P,

= u(k)=

= X(k+1) = 2 x(k—1)

x2(k+1) = 2 x(k —1)
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Hence,

1 2
x(k+1) = 2X (KD + DX (K+T)
D, +D,
_ 0.906®7 +1.3450,®,, + 0.906®) x(K) — 0.302®?7 +0.3850,@,, + 0.30203 x(k—1)
(CI)1+CI)2)2 ((D1+q)2)2

[0.906D2x(K) — 0.302d2x(k —1)] +[1.3450,®, x(K) — 0.3850,®, x(k —1)]
+0.906d2x(k) — 0.30202x(k — 1)]
D + 20,0, + D2

St IEX(K) is(M* AND M%), THEN x*(k+1) = A, %(K)
= 2x S2:IFx(k)is(M* AND M?), THEN x2(k+1) = A,%(K) | (+*)
SZ:IEx(K) is(M? AND M?) , THEN x2(k+1) = A,%(K)

where
[0.906 -0.302 _[0.672 -0.193 [0.906 -0.302
| o |”"® | 1 o | " %2 | 1 0
419 -0.88 :
Let P= >-56
~0.88 1.38

Then we can verify

APA, -P<0 ,A,PA,-P<0, ALPA,-P<O0.
From Theorem 3, the fuzzy control system is globally asymptotiaclly stable.

Method 2: (By Theorem 5)

2.178 —-0.588 0.603
= , B = , K = [—2.109 0.475]
1 0 0
2.256 -0.361 1.120
= L 0 , B, = 0 | K, =[-1.205 0.053]
0.9064 -0.302 0.9063 -0.302
Al + BlKl = 1 AT BK, = 1 0
G, = (A +BK,)+(A +BK) _ 0.6727 -0.1925
? 2 1 0

419 -0.88
Let P=

= . Theorem 5 is satisfied.
-0.88 1.38




Remarks: (with u(k) absent in consequent)

1. All the A, matrices are stable matrices if 3 a common positive-definite matrix P.

However, acommon positive-definite matrix P obviously does not always exist

even if all the A, matrices are stable matrices.

2. A fuzzy system may be globally asymptotically stable even if there does not

exist acommon positive-definite matrix P.

3. A fuzzy system is not always globally asymptotically stable even if al the A

matrices are stable matrices.

4. In the following theorem , a necessary condition for ensuring the existence of a

common positive-definite matrix P is given.

Theorem 6: [ Tanaka and Sugeno , 1992]

Assumethat A is stable, nonsingular matrix fori=1, 2, ... ,r. AA isastable
matrix fori,j=1, 2, ... r if 3 acommon positive-definite matrix P such that

A'TPA-P<0. (¥

pf: from (*) , we have

P-(A") PA*<0, since (A" =(A")™

Therefore, P< (A )" P(A™Y), fori=1, 2, ---r.
from (*) A'PA<P

=

=

=
Remark:

ATPA<(AJ'_1)TP(A\J'_1) J I’J :11 21 e, L
AJ.TATPAA‘.—P<O
AA must be a stable matrix fori , j=1, 2, --- ,r.

S5-57

Theorem 6 shows that if one of the AA matricesis not a stable matrix , then 3

a common positive-definite matrix P.
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» Parameter region (PR):
~ The PR representation graphically shows locations of fuzzy IF-THEN rulesin
consequent parameter space.

Example:
Consider the following fuzzy system ( fuzzy system 1):

Rulel: IFx(k) isC, , THEN x,(k+1) = 0.1x(k) + 0.1x(k - 1)

Rule 2 : IF x(k) isC, , THEN x,(k+1) = 0.3x(k) + 0.1x(k - 1)

Rule 3: IF x(k) isC, , THEN x,(k +1) = 0.1x(k) + 0.3x(k — 1)

01 0.1 03 0.1 0.1 0.3
R NS S B Py
Consider another fuzzy system ( fuzzy system 2):
Rule1: IFx(k) isB, , THEN x (k +1) = 0.1x(k) + 0.1x(k — 1)

Rule2: IFx(k) isB, , THEN x,(k +1) = 0.3x(k) + 0.1x(k - 1)
Rule 3: IFx(k) isB; , THEN x,(k+1) = 0.1x(k) + 0.3x(k - 1)
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Rule4: IFx(k) isB, , THEN x,(k +1) = 0.2x(k) + 0.2x(k - 1)

Rule5: IFx(k) isB; , THEN x(k +1) = 0.1x(k) + 0.15x(k — 1)
|01 01 103 01 |01 03
i I B PR IS Py
102 02 1015 015
SIS

, coefficient of x(k-1)

Rule 3
03| Rule3 0.31
Rule 4
Rule5
0.14 Rule 1 Rue2 O0lTRu&1 Rule2
0L 03 0.1 03
coefficient of x(k) coefficient of x(K)

(8) PR of fuzzy system 1. (b) PR of fuzzy system 2.
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~in fuzzy system 1, each plotted point corresponds to each edge of the
parameter region.

~in fuzzy system 2 , the PR constructed using the plotted points of rules 1-3
includes plotted points of rules 4 and 5.

~ Rules 1~3 of fuzzy system 1 or fuzzy system 2 are edges of the PR , they are
said to be edge rules. The consequent matrices A, , A, and A; in edge rules
are said to be edge matrices.

~ A fuzzy system that consists of only of edge rulesis said to be a minimum
representation.

~ Obvioudly , fuzzy system 1 isaminimum representation , while fuzzy system
2 isnot.

~ The following theorem is important for checking stability in the case of

non-minimum representation.
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Theorem 5: [ Tanakaand Sano, 1993 |

Assume that P is a positive-definite matrix. If A'PA —P <0
fori=1 2, ---, r,then ATPA - P < 0,where A" is nonedge matrix
such that

A =Zr:s1A, where Zr:s =1 and s >0.

Remark: - -

1. The above theorem indicates that the stability of afuzzy system can be
checked by applying the Tanaka-Sugeno theorem (Thm. 3) to a minimum
representation of fuzzy system.

2. In fuzzy system 2 of the above example,

A,=0.5A,+0.5A; and A;=0.5A,+0.25A,+0.25A,. Therefore, a
minimum representation of fuzzy system 2 is equivalent to fuzzy system 1.
Hence, it'sfound from Thm. 5 that fuzzy system 2 is stable if fuzzy
system lisstable.




