Chapter 4. Fuzzy Logic and Approximate Reasoning
- Linguistic variable:
~ A variable whose values are words or sentencesin anatural or artificial
language.
Ex: "speed”, values: dow, fast, very fast.
~ providing a means of approximate characterization of phenomena that
are too complex or too ill-defined to be amenable to description in
conventional quantitative terms.
« Fuzzy variable:
A fuzzy variable is characterized by atriple(X, U, R(X))
X : the name of the variable.
U : universe of discourse.
R(x) : afuzzy subset of U which represents afuzzy restriction imposed by
X.

Ex: X="old".
uU={10, 20, ..., 80}
R(x)=0.1/20+0.2/30+0.4/40+0.5/50+0.8/60+1/70+1/80

« A linguistic variable isavariable of higher order than afuzzy variable, and it

takes fuzzy variable asits values. A linguistic variable is characterized by a

quintuple (x, T(x), U, G, M).

X : name of the variable.

T(X) : aterm set of x, i.e. the set of names of linguistic values of x with each
value being afuzzy variable defined on U.

G : asyntactic rule for generating the name of values of x.

M : asemantic rule for associating each value of x with its meaning.




Ex 6.1

x="speed"

T(speed)={ very slow, slow, Moderate, Fast, ...}

G: intuitive.

M(slow): the fuzzy set for "a speed below about 40 miles per hour (mph)”

with Hgow

M (M oderate):the fuzzy set for "a speed close to 55mph" with Ypoderate
« A linguistic variable x is said to be structured if itsterm set T(x) and its
semantic rule M can be characterized such that they can be viewed as
algorithmic procedures for generating the elements of T(x) and computing the
meaning of each termin T(X).

- Linguistic hedge (or modifier) h:

An operator for modifying the meaning of its operator or, more generally, of a

fuzzy set A to create anew fuzzy set h(A).
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- The following fuzzy set operations are used in defining a linguistic hedge:

~ Concentration : con(A)

Heon(ay(U) = (a(u))?

YA
~ Dilation : dil(A)
M it ay (U) = (u,(u))2 / .
~ Intensification - int(A).
2( e p(U))? > 11 4(u) € [0,0.5] K con(a)

Iy (W) =
1-2(1- ¢ o(u))? - otherwise
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« some popular linguistic hedges are :

Very(A) = con(A): (¢, (n))’

highly(A): (#, (W)’

fairly(more or less)(A) = dil(A): (u, (u))a
roughly(A)=dil (dil (A))
plus(A): (u, (W)™
minus(A) = (¢, (u))
rather(A)=int(con(A)) AND NOT[con(A)].

where AND and NOT are the fuzzy conjunction and complement.
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« Theresulting fuzzy sets should be normalized if the height is not one.
« With the aid of linguistic hedges, we can define aterm set of alinguistic

variable, such as

T(Age)={old,very old,very very old, ......}
inwhich "old" is called the primary term, and the corresponding syntactic
rule G which can generate the term set, T(Age), recursively, could be the
following recursive algorithm :
T ={old} U{very T'}. i=0,1,2,.......(*)

Ex: for i=0,1,2,3. wehave

T'=0

T' = {old}.

T? = {old, very old}.
T® = {old, very old , very very old}.

- The semantic rule M which can associate with each T'ameaning could be

the following recursive algorithm :




MT)=Uold’,j=12,...,27%  (*¥)

with Egs. (*) and (**), "Age" isastructured linguistic variable.
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- Linguistic Approximation
~ A procedure for solving the problem of how to find aterm from the term
set of alinguistic variable such that the meaning of thisterm is closest to

agiven fuzzy set.
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~ To solve the linguistic approximation problem, one can base on the similarity
measure of two fuzzy sets, E(A, B), which indicates the degree of equality of
two fuzzy sets A and B,

where 0<SE(AB)<1, and |A|= D u,(X).

~ The ideaisthat the linguistic approximation of agiven fuzzy set A is the
term T, € T(X), whichismost similar to A than the other terms in the
term set T(x), of a givenlinguistic variable, that is
E(AT,)= I;nTa())( E(A T
Ex6.2:
Given U={0, 0.1, 0.2, ........ , 1}, and theterm set { A, B, C} of thelinguistic

variable "Truth", where




A =“True” =0.7/0.8+1/0.9+1/1
B =“MORE OR LESS True” = 0.5/0.6+0.7/0.7+1/0.8+1/0.9+1/1
C="ALMOST True" = 0.6/0.8+1/0.9+0.6/1
find the linear approximation of the fuzzy set D defined by
D=0.6/0.8+1/0.9+1/1

DNA|_ 06+1+1_26
i E(D,A)= = ==—-=0.96
Snee OA50A ™ 07ene1 27
DB
epp)y=PRBl. 06411 26
DUB| 05+0.7+1+1+1 4.2
DNC
E(D.C)= _06+1406 _22_ oo
DuC| 06+1+1 26

the linguistic approximation of the fuzzy set D istheterm A “True”.

« Fuzzy Logic - 4-10

« Logicisabasisfor reasoning.

« Classical bivalence logic deals with propositions that are required to be
either true (with alogical valueof 1) or false (with alogical value of 0) ,
which are called truth value of the propositions.

- Propositions are sentences expressed in some language and can be expressed,

in genera, in the canonical form
x is P,
where x is a symbol of a subject, and P designates a predicate which
characterizes a property of the subject.

« For example, "Taipei isin Tawan", isaproposition in which "Taipel" isa
subject and "in Taiwan" is a predicate that specifies a property of "Taipe" ,
namely, its geographical position in Taiwan.

- Each proposition A has an opposite called negation of the proposition and

isdenoted as A
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« A proposition and its negation are required to assume opposite truth values.

+ We shall consider two major topicsin logic:
logic operations and logic reasoning.

« Logic operations

~ Logic operations are (logic) functions of two propositions.

~ Thelogic operations are defined via truth tables.

~ Consider two propositions A and B, either of which can be true ("1") or

false ("0").

~ The four basic logic operations are “conjunction( A)”, “digunction( V)",

“implication (or conditional)(=>)", and “equivalence (or bi-directional)(<=>)"

and areinterpreted as“A and B”, “A or B”, “if A then B”, and “A if and only

if B,” respectively.
4-12

« Truth table

Propositions | Conjunction | Digunction | Implication | Equivalence

A B AAB AV B A=B A <&<B

1 1 1 1 1 1

1 O 0 1 0 0

0O 1 0 1 1 0

0O O 0 0 1 1

* Logic reasoning
~ Another main concern of logic system is the reasoning procedure which is

performed through some inference rules.

~ Some important inference rules are :
(AAA=B) =B (modus ponens)
*) (BAWL=B) = A (modus tollens)
(A=B)AB=C) = (A=C) (hypothetical syllogism)




~ The resulting propositions in Eq(*) are always true no matter what the truth
values of propositions A and B are. These are called tautol ogies.

~ We interpret the modus ponens as: If A istrue and if the proposition “If A
iIstruethen B istrue” is aso true then proposition B istrue.

~ The modus ponens is closely relaed to the forward data-driven inference
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which, when extend to fuzzy logic, is particularly useful for fuzzy logic control.

+ Unlike two-valued logic, the truth values of propositionsin fuzzy logic are

allowed to range over the fuzzy subsets of unit interval [0, 1], or more simply,

apoint in the interval.
- For example, atruth valuein fuzzy logic "very true" may be interpreted as a

fuzzy setin [0, 1].

« Def : The truth-value of the proposition "x isA," or simply truth value of A,
which is denoted by V(A) isdefined to be apoint in [0, 1] (called numerical

truth-value) or possibly afuzzy setin [0, 1] (called linguistic truth- value).

« Let us see how to get the truth value of a proposition which comes from the
logic operations (that is, negation, conjunction, digunction, and
implication) of other propositions whose truth values are known.

- Def :

If V(A) and V(B) are numerical truth values of propositions A and B,
respectively, then
V(NOT A) = 1-v(A)

v(A AND B) 2v(A)Av(B) =min{v(A),v(B)}

V(A ORB) = v(A)vv(B)=max{v(A),v(B)}

V(A = B) 2v(A)=v(B)=max {1-v(A),min(v(A),v(B))}.

(other definitions of implications can also be applied (See Table 7.1)).

+ Using the extension principle, we have the following definition.
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- Def : If V (A) andV/(B) are linguistic truth-values of propositions A and B 0

, respectively, and are expressed as

V(A)=an/vi+a,lv,+......... +a,lv,.
v(B)=8/w,+5,Iw,+.......... +B.Iw ..
where o, B ,v,w, € [0,1],then we have

V(NOT A) = o/(1-v))+ o,/ (1-v,) + ...... + o, /(1-v,)
V(A AND B) = v(A)Av(B) = Zmin(agi , B)Imin(v, , w)).

V(A OR B) = v(A)vv(B) = > min(e; , B,)/ max( v, , w,).

V(A= B)=v(A)=Vv(B)
= > min(e; , B,)/max{l — v, , min(v, ,w,)}....(*)

Remark : Various definitions of implication can be applied to Eq (*).

Ex6.3 : V(P)="MORE OR LESS True", V(Q)="ALMOST True", are 4-16

linguistic values of propositions P and Q, and are defined in Ex 6.2.
V(NOT P) = V(NOT MORE OR LESS True)
= 0.5/0.4+0.7/0.3+1/0.2+1/0.1+1/0
UPAND Q) =V(P) A V(Q)
= 0.5/0.6+0.7/0.7+1/0.8+1/0.9+0.6/1

“MORE OR LESS True” = 0.5/0.6+0.7/0.7+1/0.8+1/0.9+1/1
“ALMOST True” = 0.6/0.8+1/0.9+0.6/1
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- Approximate Reasoning

~ Asin any other logic, the rule of inference in fuzzy logic governsthe
deduction of a proposition, g, from set of premises{p,, p,, ...., P}

~ In fuzzy logic both the premises and the conclusion are allowed to be afuzzy
proposition.

~ Since the inferenced results usually must be trans ated into more meaningful
terms (fuzzy sets) by the use of linguistic approximation, the final conclusion
drawn from the premises p,, p,, ...., p,, iS, in general, an approximate
rather than exact consequences of p,, p,, ...., P,

~ There are four principal modes of fuzzy reasoning (or approximate reasoning)

in fuzzy logic. categorical reasoning, qualitative reasoning, syllogistic

reasoning and dispositional reasoning.
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~ We shall only discuss categorical reasoning and qualitative reasoning

which areused in FLCs.
- Categorical reasoning:

~ In this mode of reasoning, the premises are assumed to bein the
canonical form" X isA " or in the conditional canonical form, "If X isA
thenY is B", where A and B are fuzzy predicates.

~ Notations :
X, Y, Z, ... = (fuzzy) variables taking values in the universes U,V, W.
A, B, C, .... = fuzzy predicates.

~ Projection rule of inference:




(X,Y)isR

X is[R| X]

where[R{ X] denotes the projection of fuzzy relation R on X.
Ex:
(X,Y)isCloseto (3, 2

X isCloseto 3.

~ Conjunction or particularization rule of inference:
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X is A (X,Y)isA
XisB XisB
XisANB (X,Y)isAN(BxV)
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(X,Y)isA
(Y,2)isB

(X,Y,Z)=(AxW) N (UxB)

pressure isNOT VERY High
pressureisNOT VERY Low

pressureis NOT VERY High AND NOT VERY Low

X andY are APPROXIMATELY Equal

X is smal

X and Y are (APPROXIMATERLY Equa N (smal X V)).




- Digiunction or Cartesian product rule of inference:

XisA XisA
OR XisB Y isB
X isAUB (X,Y) isAxB
- Negation rule:
NOT(X isA) NOT(JohnisTall)
X isA Johnis NOT Tall
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- Entailment rule of inference (entailment principle):
XisA
ACB
XisB

Ex: Mary isVERY Young
VERY Young C Young

Mary is Young
- Compositional rule of inference:
XisA
(X)Y)isR
YisAoR

1L (V) = max, min (1 4(U), 1 g(UV)).
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The compositional rule of inference may be viewed as combination of the 4-23
conjunction and projection rules.

By conjunctionrule: (X, Y)isRMN (A xV)

By projectionrule; Y is[(RN(A xV)) | Y]

- Generalized modes ponens:

XisA Material implication(1-38):
If XisB, THENY isC B—C=5(B,C)=(B@®C)
YisAo( B®C) s. bounded sum

where  Hgee (U,V) = Min(L,1- g (U) + 1, (V).
~ Actually, the generalized modus ponensis a special case of the
compositional rule of inference.
~ Unlike the modus ponensin classical logic, the generalized modus ponens
does not require that the precondition "X is B" be identical to the premise
"XisA".
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~ The generalized modus ponensis related to the interpolation rule for solving

the important problem of "partial” matching of preconditions of rules that
arises in the operation of any rule-based system.

~ The generalized modus poems plays a very important role in fuzzy control
and fuzzy expent systems.

- Extension principle:
X is A

f (X)isf (A)

where f isamapping from U to V so that X is mapped into f(X). By extension

principle,

yf(A)(v) =Sup Uy(u), ueU,veV.

v="f (u)
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The extension principle can answer a question like, assuming that X taking
valuesin U is constrained by the proposition “X isA,” what is the constraint

on f(x) that isinduced by the constraint on X ? For example.

X is Small

X* issmall®, where gz__ . (V)=SUp gy (U).

Ex : Consider the premises
p,=JohnisVERY Big.
p,=JohnisVERY Tall.

where "Big" isagiven fuzzy subset of UxV (i.e. values of Height X values

of Weight) and "Tall" isagiven fuzzy subset of U (values of Height).
How heavy is John?

Sol: Method1: conjunction rule of inference,

: : - 4-26
(height (John),weight(John) )is Big®

(height(John)) is TAll?
(height(John), weight(John)) is Big? N(TAI2xV)

projection rule of inference.

weigh (John) is [(Big® n (Tall?xV)) | weight].
M ethod 2: compositional rule of inference
weigh (John) is Tall? - Big?
Ex : Consider the premises
p, = X issmall.
p, =X and Y are APPROXIMATELY Equal.

inwhich X and Y range over theset U ={1,2,3,4} and
Small = 1/1+0.6/2+0.2/3
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1 05 0 0 ]
05 1 05 0

0 05 1 05
0 0 051|

APPROXIMATELY Equal: X

Yis?
Sol:
Method 1:
Y = X issmall o APPROXIMATELY _ Equal.
=(1,0.6,0.5,0.2).
Y =1/1+0.6/2+0.5/3+0.2/4

Through the linguistic approximation, we can say, for example, “Y is

MORE OR LESS Small,” which isinferred from propositions p, and p,.
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Method 2: By conjunction and projection rules.

Y=[((Smallx U) » APPROXIMATELY Equal) { Y]

1 1 1 1
06 06 0.6 06

Small x U=
02 02 02 02

1 1 1 1 1 05 0 O 1 05 0 O
06 06 06 06 05 1 05 0| |05 06 05 O
02 02 02 02 " 0 05 1 05/ | 0 02 02 02
O 0 0 O 0O 0 05 1 0O 0 0 O

1 05 0 O
05 06 05 O

0 02 02 02

O 0 o0 O

lY=( 06, 05, 0.2
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- Qualitative Reasoning -
~ A mode of reasoning in which the input-output relation of asystemis
expressed as a collection of fuzzy IF-THEN fuzzy or linguistic variables.
~ For example, if X and Y are input variables and Z is the output variable,

the relation between X,Y ,and Z may be expressed as

N
If X isA;andY isB;thenZisC, .

If X isA,andY isB,thenZisC, . > (*)

If X isA,andY isB, thenZisC,_ .
where A;, B;and C, i =1,....,n are fuzzy subsets of their respective

universe of discourse.
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~ Given the dependence of Z on X and Y in the form of (*),we can employ
the compositional rule of inference to compute the value of Z given the
valuesof X and Y.

Ex: If pressure is High, Then volumeis Small.

If pressureis Low, Then volumeisLarge.

If pressure is Medium, Then volumeis max {w, A small,w,, A large}

where w,; = sup(High A Medium),w, = sup(Low A Medium), and can be
considered as weighting coefficients that represent, respectively, the degrees
to which the preconditions “High” and “Low” match the input “Medium.”
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