
•Chap. 8 Evolutionary Algorithms

~ Evolutionary algorithms (EAs) mimic natural evolutionary principles to
constitute search and optimization procedures.

~ EAs encompass several major branches, i.e., evolutionary strategies
(ES), evolutionary programming (EP), genetic algorithms (GAs), and
genetic programming (GP), due largely to historical reasons.

~ All EAs have two prominent features,
(1) They are all population-based.
(2) There are communications and information exchange among

individuals in a populations, which are the result of selection and/or
combination.

~ A general framework of EAs can be summarized as follows, where the
search operators are also called genetic operators for GAs. They are
used to generate offspring (new individuals) from parents (existing
individuals).

E-1

1. Set I = 0;

2. Generate the initial population P(i) at random;

3. REPEAT

(a) Evaluate the fitness (performance) of each individual in P(i);

(b) Select parents from P(i) based on their fitness;

(c) Apply search operators to the parents and produce generation P(i+1)

4. UNTIL the population converges or the maximum time is reached.

~Different representations of individuals and different schemes for implementing
selection and search operators define different algorithms.

E-2

~Genetic Algorithms (GAs) are general-purpose search algorithms that use

principles inspired by natural population genetics to evolve solutions to

problems.

~They were first proposed by Holland (1975).

~GAs have been employed primarily in two major areas:

optimization and machine learning.

• Basics of Genetic Algorithms

~The evolution of living beings is a process that operates on chromosomes-

organic devices for encoding the structure of living beings.

~Natural selection is the link between chromosomes and the performance

of their decoded structures.

E-3
․Genetic algorithms

~Nature evolution process contains:

(1) reproduction: chromosomes that encode successful structures to

reproduce more often than those do not.

(2) recombination (crossover): create quite different chromosomes in

children by combining material from the chromosomes of their two

parents.

(3) mutation: cause the chromosomes of children to be different from

those from those of their biological parents.

E-4

• Principal structure of GAs.

initialize P(t-0)

evaluate P(t)

recombine parents into offspring

mutate offspring

t = t+1

termination criterion fulfilled ?

finish

select parents from P(t)

replace P(t+1) with offspring

yes

no

next
generation

E-5

~ Roughly speaking, through a proper encoding mechanism, GAs

manipulate strings of binary digits (ls and 0s) called chromosomes,

which represent multiple points in the search space.

~ Like nature, GAs solve the problem of finding good chromosomes by

manipulating the material in the chromosomes blindly without any

knowledge about the type of problem they are solving.

~ The only information they are given is an evaluation of each chromosomes

they produce.

• Terminology:

~ chromosome (solution)-string of encoded parameters.

~ gene- variable.

~ alleles- the possible values of a variable.

~ locus- the position of a variable in a string.

~ genotype- the coded string which is processed by the algorithm.

~ phenotype- the decoded set of parameters.

E-6

~ Basic steps of genetic algorithm

step1: Establish a base population of chromosomes.

step2: Determine the fitness value of each chromosome.

step3: Duplicate the chromosomes according to their fitness

values and create new chromosomes by mating current

chromosomes. (e.g. mutation, recombination)

step4: Delete undesirable members of the population.

step5: Insert the new chromosomes into the population to form

a new population. Go to Step 2.

continue until the predetermined condition is achieved.

E-7

~ The encoding mechanisms and the evaluation function form the links

between the GA and the specific problem to be solved.

~ The technique for encoding solutions may vary from problem to

problem and from GA to GA.

~ An evaluation function takes a chromosome as input and returns a

number or a list of numbers that are a measure of the chromosome’s

performance on the problem to be solved. Evaluation functions play

the same role in GAs as the environment plays in natural evolution.

~ The GA is a general-purpose stochastic optimization method for solving

search problems.

E-8

Advantages of A GA:
Optimizes with continuous or discrete variables
Does not require derivative variables
Simultaneously searches from a wide sampling of the cost
surface
Deals with a large number of variables
Is well suited for parallel computers
Optimizes variables with extremely complex cost surfaces
(they can jump out of a local minimum)
Provides a list optimum variables, not just a single solution
May encode the variables so that the optimization is done
with the encoded variables
Works with numerically generated data, experimental data,
or analytical functions.

E-9

~ Remarks:

1. Of course, the GA is not the best way to solve every problem. For
instance, the traditional methods have been studied to quickly find the
solution of a well-behaved convex analytical function of only a few
variables.

2. The large population of solutions that gives the GA its power is also its
bane when its comes to speed on a serial computer.

~ A GA in its simplest form uses three operations:

Reproduction, Crossover, and Mutation.

• Reproduction:

~ Reproduction is a process in which individual strings are copied

according to their fitness value.

~ A fitness f(i) is assigned to each individual in the population, where high

numbers denote good fit.

E-10

~ The fitness function can be any nonlinear, positive, discontinuous

function because the algorithm only needs a fitness assigned to each

string.

~ The reproduction (parent selection) process:

① Roulette-wheel parent selection:

~ conducted by spinning a simulated biased roulette wheel whose slots

have different sizes proportional to the fitness values of the

individuals.

~ steps:

1. Sum the fitness of all the population members and call this result

the total fitness.

2. Generate n, a random number between 1 and total fitness.

3. Return the first population member whose fitness, added to the

fitness of the preceding population members (running total), is

greater than or equal to n.

E-11

Ex: Consider a population of six chromosomes (strings) with a set of

fitness values totaling 50.

No string (Chromosome) Fitness % of Total Running Total

1 01110 8 16 8

2 11000 15 30 23

3 00100 2 4 25

4 10010 5 10 30

5 01100 12 24 42

6 00011 8 16 50

1

2

3
4

5

6

16%

30%

4%10%

24%

16%

weighted roulette wheel

E-12

~ generate numbers randomly from the interval 1 and 50.

~ the roulette-wheel parent selection technique chooses the first

chromosome for which the running total of fitness is greater than or

equal to the random number.

e.g.:

② Tournament selection:

In tournament selection, two or more members of the population

are selected at random and their fitness compared. The member with

the highest fitness is selected.

~ once a chromosome has been selected for reproduction, an exact replica
of it is made. This chromosome is then entered into a mating pool for
further genetic operator action.

5

36

252614Chromosome chosen

9401549226Random number

E-13

• Crossover:

~ Reproduction directs the search toward the best existing individuals but

does not create any new individuals.

~ In nature, an offspring has two parents and inherits genes from both.

~ The main operator working on the parents is crossover, which happens

for a selected pair with a crossover probability Pc.

~ At first, two chromosomes from the reproduced population are mated at

random, and a crossover site (a bit position) is randomly selected. Then

the chromosomes are crossed and separated at the site. This process

produces two new chromosomes.

(1)one-point crossover:

0111010 010 1001

1001111 111 0111

crossover site

E-14

(2) two-point crossover:

• Mutation:

~ Although reproduction and crossover produce many new strings, they

do not introduce any new information into the population at the gene

level.

~ As a source of new genes, mutation is introduced and is applied with

a low probability Pm.

~ Mutation should be used sparingly because it is a random search

operator; otherwise, with high mutation rates, the algorithm will become

little more than a random search.

0111010

1001111

001110 0

11 1110 1

crossover site

E-15

• These three operators are applied repeatedly until the offspring take over

the entire population. The next generation is thus made up of offspring

of three types: mutated after crossover, crossed over but not mutated, and

neither crossed over nor mutated, but just selected.

• In a simple GA, we need to specify the following parameters:

n : population size.

Pc: crossover probability.

Pm : mutation probability.

Ex: maximize f(x)= x2, x∈[0,31]. x∈Z

① code the variable x as a binary unsigned integer of length 5.

e.g. “11000” represent integer 24.

② the fitness function is simply defined as the function f(x).

③ An initial population of size 4 is randomly selected.

④ Pc= 1.0, Pm= 0.001

E-16

(a) reproduction process:

the mating pool of the next generation is chosen by spinning the

weighted roulette wheel four times.

No. Initial x Fitness No. of copies

Population f(x)= x2 fi/∑f from Roulette Wheel

1 01001 9 81 0.08 1

2 11000 24 576 0.55 2

3 00100 4 16 0.02 0

4 10011 19 361 0.35 1

sum 1034

Average 259

E-17

iselectP
′

(b) Crossover process:

Mating Pool after Crossover New

Reproduction Mate site Population x x2

01001 2 4 01000 8 64

11000 1 4 11001 25 625

11000 4 2 11011 27 729

10011 2 2 10000 16 256

sum 1674

Average 419

E-18

~ f(x,y) is positive and to be maximized, it is used as the fitness function

directly.

~ chromosome: a string of 44 bits

the initial 22 bits: an integer x in base-2 notation.

the last 22 bits: an integer y in base-2 notation.

decode: x and y are multiplied by 200/(222 -1) to map the values of x and y

from the range [0, 222-1] to the range [0, 200]. Finally, 100 is

subtracted from x and y.

e.g.,

00001010000110000000011000101010001110111011

represent x=165,377 and y= 2,270,139

decode: x= -92.11 y= 8.25 ⇒ f= 0.495

E-19

2 2 2

2 2 2

E x : m ax im ize

sin 0 .5
 f(x ,y)= 0 .5 -

[1 .0 0 .001()]

 x ,y [-100 ,100]

x y

x y

+ −
+ +

∈

~ operators: roulette- wheel parent selection, simple crossover with

random mating, and simple mutation.

parameters: n (population size) = 100

Pc (crossover probability) = 0.65

Pm (mutation probability) = 0.008

~ At the 14th generation, the top five chromosomes are very similar and

the fitness value are:

0.99304112 0.99261288 0.99254826 0.99254438 0.99229856

E-20

GAs: How do they work

()
[] () []

1

1

 Objective: maximize , , :

 , , , 0 ,

 required precsion: six decimal places for

 representation of each chromosome

 ~cut each

k

i i i k i i i

i

f x x

x a b f x x x a b

x

• →

∈ ⊆ ℜ > ∀ ∈

•

" \ \

"

[] ()

()

()

6

6

 domain , into 10 equal ranges.

 ~let be the smallest integer s.t.

 each variable can be coded as a binary string of length

 10 2 1

 decimal 1001 001
2 1

i

i

i i i i

i

i i

m
i i

i i
i i m

a b b a

m

x m

b a

b a
x a

− ⋅

− ⋅ ≤ −
−= + ⋅

−
"

E-21

[]
[]

1

1 1 1 1

2 2 2 2

~ each chromosome is represented by a binary string of length

 the first bits ,

 next group of bits ,

k

i
i

m m

m x a b

m x a b

=

=

→ ∈

→ ∈

∑

 last group of bits [,]

 Initialization:

 set some - number of chromosomes randomly in a bitwise fashion.

 Calculate the fitness value () for each

k k k k

i

m x a b

pop size

eval v

→ ∈
•

•

#

-

1

chromosome (1, , -)

 Find the total fitness of the population

 ()

i

pop size

i
i

v i pop size

F eval v
=

=
•

= ∑

"

E-22

 Calculate the probability of a selection for each chromosome

 () /

 Calculate a cumulative probability for each chromosome

i i

i i

i i

p v

p eval v F

q v

•
=

•

1

 Selection: spin the roulette wheel - times; each time we select

 a single chromosome for a new population in the following way.

 ~ Generate a random (float) number

i

i i
i

q p

pop size
=

=

•

∑

1 1

-1

 from the range [0,1]

 ~ If then select ;otherwise select the -th

 chromosome (2 -) s.t.

Remark:The best chromosomes get more copies and the worst die off
i i i

r

r q v i

v i pop size q r q

<
≤ ≤ < <

E-23

 Crossover: expected number of chromosomes undergo the crossover operation is

 -

 ~ Generate a random (float) number from the range [0, 1]

 ~ If , select given chr

c

c

p pop size

r

r p

•
⋅

< omosome for crossover

 ~ mate selected chromosomes randomly: generate a rondom number from the

 range [1, -1] (one point crossover).

 Mutation: performed on a bit-by-bit basis

 ~ If mutation i

pos

m

•
s performed on all chromosomes then the expected number of mutated bits is

 - .

 ~ Each bit has an equal chance to undergo mutation, i.e., change from 0 to 1 or vice versa.

 ~ For each b

mp m pop size⋅ ⋅

it:

 Generate a rondom (float) number from the range [0,1] ; if , mutate the bitmr r p<

E-24

1 2 1 1 2 2

1 2

Example:

 maximize (,) 21.5 sin(4) sin(20)

 3.0 12.1, 4.1 5.8

 reguired precision: 4 decimal places.

f x x x x x x

x x

π π= + ⋅ + ⋅
− ≤ ≤ ≤ ≤

Assume pop-size=20，pc=0.25, pm=0.01

E-25

1

17 18

2

~ : domain length 15.1

 at least 15.1 10000 equal size ranges

 2 151000 2 18 bits are required

 : domain length 1.7

 at least 1.7 10000 equal size ranges

 2

x

x

⇒ ⋅
< ≤ ⇒

⇒ ⋅
14 1517000 2 15 bits are required

~ The total length of a chromosome is 18 15 33. m

< ≤ ⇒
= + =

E-26

1 18

2 15

e.g. , (010001001011010000111110010100010)

12.1 (3.0)
 3 decimal(010001001011010000)

2 1
15.1

 = 3 70352 1.052426
262143

5.8 4.1
 = 4.1 decimal(111110010100010)

2 1

 =

x

x

− −= − + ⋅
−

− + ⋅ =

−+ ⋅
−

1 2

1.7
 4.1 31906 5.755330

32767

 fitness value: (,) 20.252640f x x

+ ⋅ =

=

E-27

~ Initialization : all 33 bits are initialized randomly

E-28

Fitness values ：

20

1

total fitness : () 387.776822.i
i

F eval v
=

= =∑

E-29

~ reproduction
According to roulette wheel selection, the probability of
a selection for each chromosome is:ip iv

E-30

The cumulative probilities for each chromosome are:i iq v

E-31

Spin the roulette wheel 20 times.
Assume a (random) sequence of 20 numbers from the range [0, 1] is

E-32

q10 < 0.513870 < q11 → v11 is selected
q3 < 0.175741 < q4 → v4 is selected

temporary population (in mating pool)

E-33

~Crossover：
generate a random number r from [0,1], if r <0.25
→ select a chromosome for crossover.

A sequence of random numbers:

E-34

~v2’, v11’, v13’, and v18’ were selected for crossover.
~Mate selected chromosome randomly say (v2’ and v11’) , (v13’ and v18’) for
each of the two pairs, generate a random integer number pos from the range
[1,32]

first pair, pos=9

Offspring

E-35

Second pair, pos=20

Offspring:

E-36

Current version of the population

E-37

~Mutation:
There are m × pop_size=33 ×20=660 bits in the whole population.
We expect 660 ×pm=660 ×0.01=6.6 mutations per generation operate a random
number r from [0,1], if r < 0.01, mutate the bit.
660 random numbers are generated and 5 of these numbers were smaller than
0.01.

8190.002836602

33130.005425429

22130.008809418

19110.009945349

1340.000213112

Bit number with
in chromosome

Chromosome
number

Random numberBit position

E-38

~ Final population

E-39

decode each chromosome and calculate the fitness values
from f(x1,x2)

E-40

total fitness=447.049688 (higher than previous population
best eval(v11)=33.351874 > best eval(v15)=30.060205 in previous population.
~ After 1000 generations, the population is

E-41

The fitness values:

E-42

Remark:
It maybe that in earlier generations the fitness values of some chromosomes
were better than the value 35.477938 of the best chromosome after 1000
generations.

E-43

• Mapping objective function values to fitness:

~ Since a fitness function must be a nonnegative figure of merit, it is often

necessary to map the underlying natural objective function to a fitness

function form through one or more mappings

~ If the optimization problem is to minimize a cost function g(x), then the

following cost-to-fitness transformation is commonly used with GAs:

Cmax- g(x) where g(x)<Cmax

f(x)= 0 otherwise

E-44

where Cmax may be taken as input coefficient, for examples, as the
largest g value observed thus far, the largest g value in the current
population, or the largest of the last k generations.

~ When the original objective function is a profit or utility function u(x)

that is to be maximized, we simply transform fitness according to the

equation

f(x)= u(x)+ Cmin when u(x)+ Cmin > 0

0 otherwise

where Cmin can be chosen as input coefficient such as the absolute

value of the worse u value in the current or last k generations.

• Fitness scaling:

~ To avoid that a few “super” individuals can potentially take over a large

part of the population, thereby reducing its diversity and leading to

premature convergence, especially in the first few generations.

~ Fitness scaling can help with this problem.

E-45

~ One useful scaling procedure is linear scaling.

~ Let us denote the raw fitness as f and the scaled fitness as f’. Linear

scaling requires a linear relationship between f’ and f as follows:

f’= af + b

where the coefficients a and b are chosen such that

f’avg= favg

and f’max= Cmult fave, …….(*)

where the best fitness f’max is increased by a desired multiple (Cmult) of the
average fitness. For typically small populations (n= 50 to 100),

Cmult= 1.2 to 2 has been used successfully.

~ The linear scaling function above may cause the low fitness values

to go negative after scaling, violating the nonnegativity requirement.

One solution is to replace the condition in Eq. (*) by the condition f’min=0.

E-46

• Floating point GA:

~ Coding:

each gene is represented by a floating point number

Example (genetic fuzzy system) :

Rule j : IF x1 is A1
j AND x2 is A2

j AND ∙∙∙AND xn is An
j , THEN y is wj ,

j =1, ..., r.

Ai
j : Gaussian membership function with center and width

Chromosome:

~ Crossover

(1) Arithmetical crossover:

1
jm 1

jσ

1 1 1 1 1 1
1 1 2 2 1 1 1| | | | | | | | | | | | | | | |r r r r

n n n n rm m m w m m wσ σ σ σ σ" "" "

1 2

1 1 2

2 2 1

if and are to be crossed,

offspring: (1)

 (1) , : a random value in [0, 1]

x x

x a x a x

x a x a x a

′ = ⋅ + − ⋅
′ = ⋅ + − ⋅

E-47

such a crossover was called a flat crossover; guaranteed average crossover
(when a=1/2); intermediate crossover; and linear crossover.

(2) Simple crossover:

(3) k-point crossover:

k crossover sites are selected randomly within the range of an individual and
swapping occurs.

1 1 2 1

1 1 1 2 1 1

if (, ,) and (, ,) are crossed after the ith position,

offspring:

(, , , , ,), (, , , , ,)

q q

i i q i i q

X x x X y y

X x x y y X y y x x+ +

= =

′ ′= =

" "

" " " "

E-48

~ Mutation

(1) uniform mutation:

(2) non-uniform mutation:

1

1
1

(, ,) is a c h ro m o s o m e , s u p p o s e g e n e is m u ta te d ,

re s u lt : (, , , ,) , t :g e n e ra t io n n u m b e r

: a ra n d o m v a lu e fro m th e d o m a in o f th e c o rre s p o n d in g p a ra m e te r

t
i n k

t
i k n

k

x v v v

x v v v

v

+

=
′=

′

"
" "

1 k

1
1

(, ,), gene is mutated (domain of is [,])

result: (, , , ,)

(,) if a random digit is 0,
 {

(,) if a random digit is 1,

where the function (,)

t
i m k k k

t
i k m

k k k
k

k k k

s v v v v u

s v v v

v t u v
v

v t v

t y

+

=
′=

+ ∆ −
′ =

− ∆ −
∆

" A
" "

A

(1)

 returns a value in the range [0,] such that

the probability of (,) being close to 0 as increases.

e.g. (,) (1),

 : a random number from [0, 1],

 : the maxim

bt

T

y

t y t

t y y r

r

T

−

∆

∆ = ⋅ −

al generation number,

 : determining the degree of non-uniformity.b

E-49

․Genetic fuzzy systems

~ Consider the TSK-type fuzzy systems

1 1 2 2

0
1

Rule : IF is AND is AND AND is ,

 THEN is , 1, ..., .

 : Gaussian membership function with center and width

~ Ch

j j j
n n

n
j j

i i
i

j j j
i i i

j x A x A x A

y a a x j r

A m σ
=

+ =∑

…

romosome:

1 1 1 1 1 2 2 1
1 1 0 1 1 1 1 0 1 1 1| |r r r r r n r r

n n n n nm m a m m m a a a a aσ σ σ σ σ" "" " " " "

3
2

~ Example: fuzzy controller design

 The plant to be controlled is given by

()
 (1) ()

1 ()

 reference output

 () sin(2 /100),1 250

p
p

p

r

y k
y k u k

y k

y k k kπ

+ = +
+

= ≤ ≤

E-50

fuzzy

 GA
Fitness-value

assignment

Plant
yp(k+1)

yp(k)

u(k)
yr(k+1)

Z
1–

+

_

controller

~Control configuration

250
2

1

1
~ Fitness value:

(() ())r p
k

Fit
y k y k

=

=
−∑

E-51

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

k

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

generation

fit
ne

ss
 v
al
ue

~control result

~fitness values
for each generation

E-52

// Simple Genetic Algorithm
// binary coded
// roulette wheel method
// function f(x) = exp^(-3.125*ln(2)*(x-0.1)^2)*sin(5*pi*x)^6 ; ;x:[0,1]

#include <iostream.h>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#define _pi 3.14159
#define _popsize 40
#define _lchrom 12 // chromosome length
#define _maxgen 600 // max generation
#define _pcross 0.6 // crossover probability
#define _pmutation 0.01 // mutation probability
inline float max(float a , float b)
{ return ((a>b) ? a :b); }

P-1

class Population
{

friend void generation(void) ;
friend void crossover(int ,int ,int);
friend void report(void) ;
float chrom[_lchrom+1] ;
float x ;
public :
float fitness ;
void initpop(void) ;
void decode(void) ;
void objfunc(void) ;
void save(void) ;

} ;
void initialize(void) ;
void statistics(void) ;
void generation(void) ;
void report(void) ;

Population _oldpop[_popsize+1],_newpop[_popsize+1] ;
int _gen,_nmutation=0,_nncross=0 ;
float _sumfitness, _avg,_max,_min ;

P-2

int main(void)
{ int i ;

_gen = 0 ;
initialize() ;

while (_gen < _maxgen)
{
_gen = _gen + 1 ;
generation() ;
for(i=1;i<=_popsize;i++)
_oldpop[i] = _newpop[i] ;
statistics() ;
report() ;

}

for(i=1;i<=_popsize;i++)
_oldpop[i].Save() ;

getch() ;
return(0);

}

P-3

void initialize()
{ int j ;
void initreport(void) ;
time_t t;

cout << "\n ****** Simple Genetic Algorithm ****** " << endl ;
srand((unsigned) time(&t));
for(j=1;j<=_popsize;j++)

{ _oldpop[j].initpop();
_oldpop[j].decode();
_oldpop[j].objfunc() ;

}
statistics() ;
report() ;

}

void Population :: initpop()
{ int j,j1 ;

for(j1=1;j1<=_lchrom;j1++)
chrom[j1] = rand()%2 ;
}

P-4

void Population :: decode()
{

int j ;
float powerof2,coef ;

x = 0 ;
powerof2 = 1 ;
for(j=1;j<=_lchrom;j++)
{
if (chrom[j]) x += powerof2 ;
powerof2 = powerof2 * 2. ;

}
coef = pow(2,_lchrom) -1;
x = x /coef ;
// return accum ;
}

void Population :: objfunc()
{

fitness = exp(-3.125*log(2)*pow(x-0.1,2))*pow(sin(5*_pi*x),6) ;
}

P-5

void statistics()
{ int j ;

_sumfitness = _oldpop[1].fitness ;
_min = _oldpop[1].fitness ;
_max = _oldpop[1].fitness ;
for(j=2;j<=_popsize;j++)
{
_sumfitness += _oldpop[j].fitness ;
if (_oldpop[j].fitness > _max) _max = _oldpop[j].fitness;
if (_oldpop[j].fitness < _min) _min = _oldpop[j].fitness ;
}

_avg = _sumfitness/_popsize ;
}

int flip(float prob)
{ int i,j ;

i = rand()%1000 ;
if (i < 1000*prob)
j = 1 ;
else
j = 0 ;
return j ; }

P-6

void generation()
{

int i,mate1,mate2 ;
int select(void) ;
void crossover(int ,int ,int);
i = 1 ;
while(i<= _popsize)

{
mate1 = select() ;
mate2 = select() ;
crossover(i,mate1,mate2) ;
_newpop[i].decode() ;
_newpop[i].objfunc();
_newpop[i+1].decode() ;
_newpop[i+1].objfunc();
i= i+2 ;
}
}

P-7

int select()
{ float ran,partsum=0 ;

int j=0 ;
ran=_sumfitness*(rand()%10000)/9999.;
while((partsum<ran)&&(j !=_popsize))

{ j=j+1;
partsum=partsum+_oldpop[j].fitness;

}
return j;

}

void crossover(int i,int mate1,int mate2)
{
int j,jcross ;
int mutation(int) ;
if (flip(_pcross))
{jcross = rand()%(_lchrom-1)+1 ;
_nncross = _nncross + 1 ;

}
else
jcross = _lchrom ;

P-8

for(j=1;j<=jcross;j++)
{ newpop[i].chrom[j] = mutation(_oldpop[mate1].chrom[j]);
_newpop[i+1].chrom[j] = mutation(_oldpop[mate2].chrom[j]);
}
if (jcross != _lchrom)
for (j=jcross+1;j<=_lchrom;j++)
{_newpop[i].chrom[j] = mutation(_oldpop[mate2].chrom[j]);
_newpop[i+1].chrom[j] = mutation(_oldpop[mate1].chrom[j]);

}
}

int mutation(int ge)
{ int muta ;
if (flip(_pmutation))
{_nmutation = _nmutation + 1 ;
if (ge == 0) muta = 1 ;
if (ge == 1) muta = 0 ;

}
else
muta = ge ;
return muta ;
}

P-9

void report()
{
int i,j ;
cout << “ \n Generation is ------ " << _gen ;

cout << "\n -- " ;
cout << "\n max --- " << _max << " , min --- " << _min << " , avg -- " <<

_avg ;
cout << "\n sum_fitness " << _sumfitness <<" , nmutation " <<

_nmutation ;
cout << ", ncross ----- " << _nncross ;
_nmutation = 0 ;
_nncross = 0 ;
}

void Population :: Save()
{ FILE *fy ;
if((fy=fopen("y.dat","a"))==NULL) exit(1) ;
fprintf(fy,"%f %f \n",x,fitness);
fclose(fy) ;
}

P-10

․Program for tournament selection

const int _number=2 ;
int tournament_select()
{ int ran[_number+1] ;

int max,j=0 ;

for(j=1;j<=_number;j++)
ran[j] = rand()%_popsize + 1 ;

max = ran[1] ;

for(j=2;j<=_number;j++)
{

if (_oldpop[ran[j]].fitness > _oldpop[max].fitness)
{ max = ran[j] ; }

}

return max ;

}

P-11

P-12

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ge
ne

ra
tio

n
0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ge
ne

ra
tio

n
50

0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ge
ne

ra
tio

n
5

